ELEC 875

Design Recovery
and
Automated Evolution

Week 1 Class 1
Introduction

System Evolution

e Real systems evolve over time
¢ notjust bug fixes
environment changes over time
new /old features
legacy systems

S S 5

* Design Recovery
0 Recover design level facts about software
artifacts

e Automated Evolution
¢ semi-automated changes to systems

ELEC 875 — Design Recovery and Automated Evolution

Course Structure

e 5.5 weeks of lectures
¢ background material (readings)

¢ basis
e Midterm (25%)

¢ based on lectures
e Advanced Readings + TXL

0 reports (30%) and discussion (15%)
e Project (30%)

¢ Project Presentation

¢ TXL

ELEC 875 — Design Recovery and Automated Evolution

LegacX

noun A sum of money, or a specified article, given
to another by will; anything handed down by
an ancestor or predecessor

adj associated with something that is outdated or
discontinued

ELEC 875 — Design Recovery and Automated Evolution

Legacy Systems

e Software
O inherited (more than one generation of
developers)
O valuable
— significant resources to replace
— significant risk to replace
roblems:
original developers may not be available
older development methods used (outdated?)
extensive modifications

missing or outdated documentation
studies show 50% — 75% of available effort

ELEC 875 — D£51gn eco%grglarg QLE)omat g&mlut\%n

SO g

Legacy Systems

e Traditionally viewed as old and expensive
O prohibitively expensive
¢ only a matter of time before they must be
replaced
¢ drain on resources
¢ outdated

ELEC 875 — Design Recovery and Automated Evolution

Legacy Systems

o Alternate View:
¢ crown jewels
¢ organizations that have not let their legacy
systems get out of control (i.e. most large
financial institutions) have a significant
advantage over other organizations
0 system is working and evolves

ELEC 875 — Design Recovery and Automated Evolution

Legacy Systems

e Continuous Evolution
¢ You own a wooden ship. You replace each
board in the ship each time you sail. At what
point in time do you have a new ship?
¢ Ship of Theseus

Space Shuttle
Operating Systems
Compilers

S OO

Financial Systems (systems written in 1962 are
still running).

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.

Source Artifacts:

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.

Source Artifacts:
¢ source code

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.
Source Artifacts:

¢ source code
¢ database definitions

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.

Source Artifacts:
¢ source code
¢ database definitions
¢ screen definitions (also web page definitions)
¢ communication definitions

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.

Source Artifacts:
¢ source code
database definitions
screen definitions (also web page definitions)
communication definitions

S OO

stored procedures

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.

Source Artifacts:
¢ source code
database definitions
screen definitions (also web page definitions)
communication definitions

stored procedures
scripting languages (JCL, TCL, Shell, DOS BAT)

S OO

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.

Source Artifacts:
¢ source code
database definitions
screen definitions (also web page definitions)
communication definitions
stored procedures
scripting languages (JCL, TCL, Shell, DOS BAT)

some forms of documentation

ST O

ELEC 875 — Design Recovery and Automated Evolution

Design Recoverz

e Recover Design Information from Source Artifacts.

Source Artifacts:

0

ST O

source code

database definitions

screen definitions (also web page definitions)
communication definitions

stored procedures

scripting languages (JCL, TCL, Shell, DOS BAT)
some forms of documentation

4GL languages (application generation)

ELEC 875 — Design Recovery and Automated Evolution

Resources

e (Conferences:

¢ IEEE International Conference on Software
Maintenance (ICSM)

¢ IEEE Working Conference On Reverse
Engineering (WCRE now SANER))

0 European Conference On Software Maintenance
and Reengineering (CSMR now SANER)

0 IEEE International Conference on Program
Comprehension (ICPC)

¢ IEEE International Conference On Software
Engineering (ICSE)

¢ Foundations on Software Engineering

ELEC 875 — Design Recovery and Automated Evolution

Resources

e Journals

e Web
¢ Authors Web Pages:
— Dr. Timothy Lethbridge (SITE, U of Ottawa)
— Dr. Hausi Miiller (CS, U of Victoria)
and many others (check references in articles)

O http:/ /citeseerx.ist.psu.edu/
0 google scholar

ELEC 875 — Design Recovery and Automated Evolution

Papers for next week

e Singer, J., Lethbridge, T., Vinson, N. and Anquetil, N., "An
Examination of Software Engineering Work Practices",
CASCON '97 , Toronto, October, pp. 209-223.

e Lethbridge, T. and Singer, J. (1997), "Understanding
Software Maintenance Tools: Some Empirical Research”,
Workshop on Empirical Studies of Software Maintenance

(WESS 97) , Bari Italy, October, pp. 157-162.

e R. Ferenc, S. Sim, R. Holt , R. Koschke, T. Gyimoéthy,
"Towards a Standard Schema for C/C++", 8th Working
Conference On Reverse Engineering (WCRE'0OI) , Stuttgart,
Germany, October, pp. 49-38.

ELEC 875 — Design Recovery and Automated Evolution

Biggerstaff - Introduction

* “Design Recovery For Maintenance and Reuse",
IEEE Computer, 22(7), July 1989, pp. 36-99
e Seminal Paper
¢ Discusses the General Goal
0 Prototype: Desire - first step towards the goal
* Design Recovery Already Happens
¢ “a common, sometimes hidden part of many
activities scattered throughout the software life
cycle”
* Domain Expertise - Domain Model
¢ Tools need to abstract domain knowledge as
well.

ELEC 875 — Design Recovery and Automated Evolution

Biggerstaft

e Design recovery whenever a system is maintained
e Several Steps
¢ Program Understanding
- Modules
- Key data items
- Software engineering artifacts
- Informal design abstractions
- Relate SE artifacts and informal abstractions to
the code
¢ Population of Reuse and Recovery Libraries
0 Applying Results of Design Recovery

ELEC 875 — Design Recovery and Automated Evolution

Identify the Modules

e Not all languages have modules
e software of any size has modules
e variety of ways to implement modules
0 separate files and compilation units
- module.h module.c
- no nested modules
- smaller modules (one file)
- may be more than one implementation file
- e.g. modulel.c module2.c
* naming convention for type, procedure or variable
names

ELEC 875 — Design Recovery and Automated Evolution

Key Data Items

* Most programs are organized around one or more
specific data items.
¢ Master journal record in transaction systems
0 Master account database
¢ Ready, wait and device queues in operating

systems

e These data items are some abstraction of the
problem domain. What are they?
¢ Customer, Sale, Deposit, Process

e How are they related to the modules
0 SA&D vs ADTs

¢ Functional Decomposition vs OO

ELEC 875 — Design Recovery and Automated Evolution

SE Artifacts

e The result of Design Recovery (as expressed by
Biggerstaff) are design artifacts
¢ dependent on shop
¢ PDLs, Dataflow, Data Dictionary
¢ UML?
e Does not have to match the artifacts originally
used to create the system
o Artifacts must be appropriate for system
¢ Consequences of a poor fit?
¢ UML for 40 year old transaction system

ELEC 875 — Design Recovery and Automated Evolution

Informal Design Abstractions

e Informal descriptions of concepts that occur in the
code (automatable?)

* Design Rational

e Original Designers are not available, or it may be
so long that they do not remember
¢ People’s version of history change over the

years

0 Guess
¢ Source Code Comments
¢ Existing Documentation

ELEC 875 — Design Recovery and Automated Evolution

Relating Abstractions to Code

Link the recovered design back to the code
Which functions are part of which module?
Which files are part of a UML class?

Which data structure represents a particular
informal concept

e Necessary to answer low level questions that have
been abstracted out
¢ needed in order to use the system
¢ not designing systems from scratch, modifying
existing systems.
- modifications to the design imply

modifications to Earticular pieces of code
ELEC 875 — Design Recovery and Automated Evolution

Reuse and Application

e late 80’s early 90’s - big thing was code reuse
e Identity reusable parts of code

0 generalize to make more reusable

¢ tactoring and decoupling

* Biggerstaff - not just code reuse, but also design
recovery reuse
0 help build similar components
O help recover similar components from other
systems

ELEC 875 — Design Recovery and Automated Evolution

Desire

* linguistic patterns - lexical
¢ representation of informal information
¢ nmaming convention
e Structural Requirements
0 presence of one component implies another
0 some structures are aggregations of other
structures
e Incomplete Match
¢ not all systems are created equal
¢ manual intervention

ELEC 875 — Design Recovery and Automated Evolution

Informal Information

#include <stdio.h>
#include “h0001l.h”
#include “h0002.h”
#include “h0003.h”

0001 (a0001)
unsigned int a0001;
{
unsigned int 10001;
£0002 (g0005, 40001, d4d0002);
£0002 (a0001, 40003, d0002);
f0003(g0001[a0001] .s0001, g0001[a0001].s0002) ;
go006 = a0001;
10001 = g0001[a0001].s0003;
1f('£0004 (10001) && (gOO0O2->gO003) [10001] .s0004 == d0004)
fO005 (10001) ;

ELEC 875 — Design Recovery and Automated Evolution

Informal Information

#include <stdio.h>
#include “proc.h”
#include “window.h”
#include “globdefs.h”

change-window (nw)

unsigned int nw;

{
unsigned 1nt pn;
border—-attribute (cwin, NORM ATTR, INV_ ATTR, INV-ATTR) ;
border—-attribute (nw, NORMHLIT-ATTR, INV-ATTR) ;
move—-cursor (wintbl[nw] .crow,wintbl [nw] .ccol) ;

cwin = nw;
pn = wintbl [nw] .pnumb;
if (!outrange (pn) && (g->proctbl) [pn].procstate == SUSPENDED)

resume (pn) ;

ELEC 875 — Design Recovery and Automated Evolution

Example Curses Screen (Debian)

Debian Configuration

| Debian software selection
At the moment, only the core of Debian is 1nstalled To tune the
installation to your needs, you can choose to install one or more of the
following predefined collections of software. Experienced users may
prefer to select packages manually.

Choose software to install:

Desktop environment

Web server

Print server

DNS serwver

File server

Mail server

SOQL database

manual package selection

ELEC 875 — Design Recovery and Automated Evolution

Prototype

* lower level
¢ functions, files, global data items
¢ definition locations, use locations
¢ calls uses depends

* Components
0 parser, analysis, view generation
¢ links comments to artifacts

* Viewer
¢ queries link back to source code

ELEC 875 — Design Recovery and Automated Evolution

AnaIXSiS

* Prototype is lower level
O starting point is the code
¢ may also include comments
e Link Back to Code
¢ always important
¢ use to modity existing code
¢ knowledge of design is important, but only
useful if it helps you in the maintenance task
 Manual Intervention
¢ Design recovery includes abstract concepts.
Until real Al is created, human mind is still king.

HLEC &7 — Desim Rewowery amd] Antiometied] Bvollutfiiom

Analysis

e Informal Information
¢ semantics is not the only thing
- turing computable argument
¢ real systems do not contain random code
- they have to understand it and have some
confidence that it actually works
¢ nmaming conventions
¢ structural conventions
e One main goal is to help humans
¢ don’t underestimate humans

ELEC 875 — Design Recovery and Automated Evolution

Design Recovery Architecture

o1 | Extractor Design
Code Model

Reporter

\ /

‘ Reports |H

ELEC 875 — Design Recovery and Automated Evolution

Design Recovery Architecture

o1 | Extractor Design
Code Model

Reporter

\ /

‘ Reports |H

ELEC 875 — Design Recovery and Automated Evolution

Modeling -ER

managedBy P
0:1
Employee [member > Department
1-00 LIYO: int l:co 01 [Name: string

ELEC 875 — Design Recovery and Automated Evolution

Modeling - Extended ER

managedBy P
0:1
Employee [member > Department
1-00 LIYO: int l:co 01 [Name: string

A

Part Time Full Time
Benefits: xyzzy

Temp
Hours: int

ELEC 875 — Design Recovery and Automated Evolution

Modeling

e In traditional design (forward engineering), we model
the problem domain and incorporate that model into
the software in some manner.

¢ OOAD
0 SA&D

e In design recovery, the problem domain is software.
Our model will consist of entities that represent
software artifacts (data is a program)

e Long Term Goal: to tie the model extracted from the
code to a traditional problem model

ELEC 875 — Design Recovery and Automated Evolution

Design Recovery Architecture

o1 | Extractor Design
Code Model

Reporter

\ /

‘ Reports |H

ELEC 875 — Design Recovery and Automated Evolution

Base Model

e Entities and Relations in the Base Model directly
represent software artifacts
¢ source code elements

* Example Entities
¢ wvariables
0 procedures
O types

¢ statements

ELEC 875 — Design Recovery and Automated Evolution

Base Model

e Example Relations

¢ calls (procedure calls a procedure)
references (procedure references a variable)
isFieldOf (field to structure or class)
hasType (type of variable or function)
ifPart (if statement = statement)

S OO

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Notes

e some entities have natural names
¢ wvariables
¢ procedures
O types

- names may be predefined or user defined

e some entities do not have natural names
¢ statements

¢ blocks
¢ constants

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Example

file main.c
volid printf(char *, ..);
char * foo(int);
int main(int argc, char **argv)/{
printf(“hello world%s”,foo(3)
}

file foo.c
char * foo(int x){
return (“!\n");

}

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Example

Entities:
Files: main.c foo.c Functions: foo, main
Variables: argc, argv, x Prototypes: foo, printt

Constants: “hello world%s”, “!\n”
Types: void, int, char®, char*™*, char
Relations:
Contains: (main.c,printf), (main.c, main), (main.c foo)
Calls: (main,foo)
Parameter: (main, argc), (main, argv), (foo,x)
Argument: (foo,3)
HasType: (main, int), (foo, char®), (argc, int), (argyv,
char**), (x,int), (printf,void),(foo, char®)

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Issues

* Unique Naming
¢ some entities have the same name
scoping
name spaces (Java, C, C++)
Model is a database, need a key for each entity

S OO

different entity sets - keys needed only for same
entity sets and for entity sets that share relations
¢ solutions:

- unique id for each entity (CPPX, Columbus)

- name derived from scope (LS/2000)

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Issues

e Resolution
¢ sample model cannot connect arguments to
parameters (more than one call? more than one
argument?)
¢ Return value of foo?

e Organization
0 Database practice - organize database to answer
common queries
¢ any given organization makes some queries hard,
other queries easy

ELEC 875 — Design Recovery and Automated Evolution

Design Recovery Architecture

o1 | Extractor Design
Code Model

Reporter

\ /

‘ Reports |H

ELEC 875 — Design Recovery and Automated Evolution

Derived Model

e built on top of the base model
¢ derived from information in the base model
new relations between entities
new entities for existing entity types
new entity types

S OO

new attributes

e Two types of derived information
0 deterministic computed information
- implementation semantics, storage semantics
¢ inferred information (heuristics)

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Computed

* storage semantics
0 programmers can and do play storage games

struct xyzzy{
Int x;
float y;

7

- x is at offset 0 and is 4 bytes long
-y is at offset 4 and is 4 bytes long

e Big Endian/Little Endian

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Computed

* storage semantics
0 programmers can and do play storage games

union Xyzzyt
Int x;
float y;

};

- x is at offset 0 and is 4 bytes long
-y is at offset 0 and is 4 bytes long

e x and y occupy the same memory

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Computed

struct xyzzy{

int type;
union
struc{:t { what if fields X and Y
have the same offset???
int Xx;
} gptionl; what if the programmer
struct { intends them to have the
int y; same offset??
} gptionz;
} detail;
}i

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Computed

e BCD - binary coded decimal
e COMP-3 - BCD + Sign Nibble

811(0111512197(3,2

8,1(0/1152197

W
I+

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Computed

e Cobol Data structures

01 A.
05 B PIX XX.
05 C.
10 D PIC X.
10 FILLER PIC X(3).
05 F PIC 9(4).

05 G REDEFINES F PIC XXXX.

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Computed

e BCD - binary coded decimal
e COMP-3 - BCD + Sign Nibble

01 CONV-REC.

05 NUM-VAL PIC 99 COMP-3.
05 ALPHA REDEFINES NUM-VAL.

10 ALPHA-VAL PIC X.

10 FILLER PIC X

MOVE INBYTE to ALPHA-VAL.
DIVIDE NUM-VAL BY 10.

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Resolution Issue

Relations:
Contains: (main.c,printf), (main.c, main), (main.c foo)

Calls: (main, foo)
Parameter; aain~argc,1), (main, argV,Z)
Argume @

HasType: (niaim, Tnt), (foo, char®), (argc, int), (argy,
char™), (x,int), (printf,void),(foo, char®)

X=3

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Resolution Issue

file main.c
void printf(char *, ..);
volid bar(int,int);
int main(int argc, char **argv)/{
foo(2,3);
foo(atoi(argv[l]),atoi(argv[2]));
}

file foo.c
char * foo(int x, int y){

}

ELEC 875 — Design Recovery and Automated Evolution

Base Model - Resolution Issue

file main.c
void printf(char *, ..);
void bar(int,int);

*argv) {
go(2,atoi(argv([2]));

foQ(atoi(argv[1l]),3);
}

file foo.c
char * foo(int x, int y){

}

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Inferred

e Use other information to infer information about
entities.

e Y2K - Dates
¢ Names of Variables and Functions
¢ Storage Types of Fields

¢ Interaction with OS or with known API
¢ Domain Dependent Patterns

01 MTGSTD PIC 9(6).

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Inferred

e Use other information to infer information about
entities.

 Y2K - Dates
¢ Names of Variables and Functions
¢ Storage Types of Fields
¢ Interaction with OS or with known API
¢ Domain Dependent Patterns

01 CURRENT-DATE-YYMMDD PIC 9(6).
01 MTGSTD PIC 9(6).

IF MTGSTD > CURRENT-DATE-YYMMDD

ELEC 875 — Design Recovery and Automated Evolution

Derived Model - Inferred

e Move to higher level of abstraction
e Business Rules, Business Types
e Goal:
¢ Link to problem model for program

0 Employee Number, Customer Name, Customer
Address

O Where are they used?

0 How are they related?

ELEC 875 — Design Recovery and Automated Evolution

