
ELEC 875 – Design Recovery and Automated Evolution

ELEC 875
Design Recovery

and
Automated Evolution

Week 1 Class 1
Introduction

ELEC 875 – Design Recovery and Automated Evolution

System Evolution
• Real systems evolve over time
◊ not just bug fixes
◊ environment changes over time
◊ new/old features
◊ legacy systems

• Design Recovery
◊ Recover design level facts about software

artifacts

• Automated Evolution
◊ semi-automated changes to systems

ELEC 875 – Design Recovery and Automated Evolution

Course Structure
• 5.5 weeks of lectures
◊ background material (readings)
◊ basis

• Midterm (25%)
◊ based on lectures

• Advanced Readings + TXL
◊ reports (30%) and discussion (15%)

• Project (30%)
◊ Project Presentation
◊ TXL

ELEC 875 – Design Recovery and Automated Evolution

Legacy

noun A sum of money, or a specified article, given
to another by will; anything handed down by
an ancestor or predecessor

adj associated with something that is outdated or
discontinued

ELEC 875 – Design Recovery and Automated Evolution

Legacy Systems
• Software
◊ inherited (more than one generation of

developers)
◊ valuable

– significant resources to replace
– significant risk to replace

• Problems:
◊ original developers may not be available
◊ older development methods used (outdated?)
◊ extensive modifications
◊ missing or outdated documentation
◊ studies show 50% – 75% of available effort

(domain dependent)

ELEC 875 – Design Recovery and Automated Evolution

Legacy Systems
• Traditionally viewed as old and expensive
◊ prohibitively expensive
◊ only a matter of time before they must be

replaced
◊ drain on resources
◊ outdated

ELEC 875 – Design Recovery and Automated Evolution

Legacy Systems
• Alternate View:
◊ crown jewels
◊ organizations that have not let their legacy

systems get out of control (i.e. most large
financial institutions) have a significant
advantage over other organizations

◊ system is working and evolves

ELEC 875 – Design Recovery and Automated Evolution

Legacy Systems
• Continuous Evolution
◊ You own a wooden ship. You replace each

board in the ship each time you sail. At what
point in time do you have a new ship?

◊ Ship of Theseus

◊ Space Shuttle
◊ Operating Systems
◊ Compilers
◊ Financial Systems (systems written in 1962 are

still running).

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:
◊ source code

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:
◊ source code
◊ database definitions

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:
◊ source code
◊ database definitions
◊ screen definitions (also web page definitions)
◊ communication definitions

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:
◊ source code
◊ database definitions
◊ screen definitions (also web page definitions)
◊ communication definitions
◊ stored procedures

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:
◊ source code
◊ database definitions
◊ screen definitions (also web page definitions)
◊ communication definitions
◊ stored procedures
◊ scripting languages (JCL, TCL, Shell, DOS BAT)

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:
◊ source code
◊ database definitions
◊ screen definitions (also web page definitions)
◊ communication definitions
◊ stored procedures
◊ scripting languages (JCL, TCL, Shell, DOS BAT)
◊ some forms of documentation

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery
• Recover Design Information from Source Artifacts.

Source Artifacts:
◊ source code
◊ database definitions
◊ screen definitions (also web page definitions)
◊ communication definitions
◊ stored procedures
◊ scripting languages (JCL, TCL, Shell, DOS BAT)
◊ some forms of documentation
◊ 4GL languages (application generation)

ELEC 875 – Design Recovery and Automated Evolution

Resources
• Conferences:
◊ IEEE International Conference on Software

Maintenance (ICSM)
◊ IEEE Working Conference On Reverse

Engineering (WCRE now SANER))
◊ European Conference On Software Maintenance

and Reengineering (CSMR now SANER)
◊ IEEE International Conference on Program

Comprehension (ICPC)
◊ IEEE International Conference On Software

Engineering (ICSE)
◊ Foundations on Software Engineering

ELEC 875 – Design Recovery and Automated Evolution

Resources
• Journals

• Web
◊ Authors Web Pages:

– Dr. Timothy Lethbridge (SITE, U of Ottawa)
– Dr. Hausi Müller (CS, U of Victoria)
and many others (check references in articles)

◊ http://citeseerx.ist.psu.edu/
◊ google scholar

ELEC 875 – Design Recovery and Automated Evolution

Papers for next week
• Singer, J., Lethbridge, T., Vinson, N. and Anquetil, N., "An

Examination of Software Engineering Work Practices",
CASCON '97 , Toronto, October, pp. 209-223.

• Lethbridge, T. and Singer, J. (1997), "Understanding
Software Maintenance Tools: Some Empirical Research",
Workshop on Empirical Studies of Software Maintenance
(WESS 97) , Bari Italy, October, pp. 157-162.

• R. Ferenc, S. Sim, R. Holt , R. Koschke, T. Gyimóthy,
"Towards a Standard Schema for C/C++", 8th Working
Conference On Reverse Engineering (WCRE'01) , Stuttgart,
Germany, October, pp. 49-58.

ELEC 875 – Design Recovery and Automated Evolution

Biggerstaff - Introduction
• “Design Recovery For Maintenance and Reuse",

IEEE Computer, 22(7), July 1989, pp. 36–99
• Seminal Paper
◊ Discusses the General Goal
◊ Prototype: Desire - first step towards the goal

• Design Recovery Already Happens
◊ “a common, sometimes hidden part of many

activities scattered throughout the software life
cycle”

• Domain Expertise - Domain Model
◊ Tools need to abstract domain knowledge as

well.

ELEC 875 – Design Recovery and Automated Evolution

Biggerstaff
• Design recovery whenever a system is maintained
• Several Steps
◊ Program Understanding

- Modules
- Key data items
- Software engineering artifacts
- Informal design abstractions
- Relate SE artifacts and informal abstractions to
the code

◊ Population of Reuse and Recovery Libraries
◊ Applying Results of Design Recovery

ELEC 875 – Design Recovery and Automated Evolution

Identify the Modules
• Not all languages have modules
• software of any size has modules
• variety of ways to implement modules
◊ separate files and compilation units

- module.h module.c
- no nested modules
- smaller modules (one file)
- may be more than one implementation file

- e.g. module1.c module2.c
• naming convention for type, procedure or variable

names

ELEC 875 – Design Recovery and Automated Evolution

Key Data Items
• Most programs are organized around one or more

specific data items.
◊ Master journal record in transaction systems
◊ Master account database
◊ Ready, wait and device queues in operating

systems
• These data items are some abstraction of the

problem domain. What are they?
◊ Customer, Sale, Deposit, Process

• How are they related to the modules
◊ SA&D vs ADTs
◊ Functional Decomposition vs OO

ELEC 875 – Design Recovery and Automated Evolution

SE Artifacts
• The result of Design Recovery (as expressed by

Biggerstaff) are design artifacts
◊ dependent on shop
◊ PDLs, Dataflow, Data Dictionary
◊ UML?

• Does not have to match the artifacts originally
used to create the system

• Artifacts must be appropriate for system
◊ Consequences of a poor fit?
◊ UML for 40 year old transaction system

ELEC 875 – Design Recovery and Automated Evolution

Informal Design Abstractions
• Informal descriptions of concepts that occur in the

code (automatable?)
• Design Rational
• Original Designers are not available, or it may be

so long that they do not remember
◊ People’s version of history change over the

years
◊ Guess
◊ Source Code Comments
◊ Existing Documentation

ELEC 875 – Design Recovery and Automated Evolution

Relating Abstractions to Code
• Link the recovered design back to the code
• Which functions are part of which module?
• Which files are part of a UML class?
• Which data structure represents a particular

informal concept

• Necessary to answer low level questions that have
been abstracted out
◊ needed in order to use the system
◊ not designing systems from scratch, modifying

existing systems.
- modifications to the design imply
modifications to particular pieces of code

ELEC 875 – Design Recovery and Automated Evolution

Reuse and Application
• late 80’s early 90’s - big thing was code reuse
• Identify reusable parts of code
◊ generalize to make more reusable
◊ factoring and decoupling

• Biggerstaff - not just code reuse, but also design
recovery reuse
◊ help build similar components
◊ help recover similar components from other

systems

ELEC 875 – Design Recovery and Automated Evolution

Desire
• linguistic patterns - lexical
◊ representation of informal information
◊ naming convention

• Structural Requirements
◊ presence of one component implies another
◊ some structures are aggregations of other

structures
• Incomplete Match
◊ not all systems are created equal
◊ manual intervention

ELEC 875 – Design Recovery and Automated Evolution

Informal Information
#include <stdio.h>
#include “h0001.h”
#include “h0002.h”
#include “h0003.h”

f0001(a0001)
unsigned int a0001;
{  
 unsigned int i0001;  
 f0002(g0005, d0001, d0002);  
 f0002(a0001, d0003, d0002);
 f0003(g0001[a0001].so001, g0001[a000l].sOOO2); 
 go006 = a0001;  
 i0001 = g0001[a0001].s0003;  
 if(!f0004(i0001)&&(gOOO2->gOOO3)[iOOOl].sOOO4 == d0004)
 fOO05(iOOO1);
}

ELEC 875 – Design Recovery and Automated Evolution

Informal Information
#include <stdio.h>
#include “proc.h”
#include “window.h”
#include “g1obdefs.h”

change-window(nw)
unsigned int nw;
{  
 unsigned int pn;
 border-attribute(cwin,NORM_ATTR,INV_ATTR,INV-ATTR);
 border-attribute(nw,NORMHLIT-ATTR,INV-ATTR);
 move-cursor(wintbl[nw].crow,wintbl[nw].ccol); 
 cwin = nw;  
 pn = wintbl[nw].pnumb;  
 if(!outrange(pn) && (g->proctbl)[pn].procstate == SUSPENDED)
 resume(pn);
}

ELEC 875 – Design Recovery and Automated Evolution

Example Curses Screen (Debian)

ELEC 875 – Design Recovery and Automated Evolution

Prototype
• lower level
◊ functions, files, global data items
◊ definition locations, use locations
◊ calls uses depends

• Components
◊ parser, analysis, view generation
◊ links comments to artifacts

• Viewer
◊ queries link back to source code

ELEC 875 – Design Recovery and Automated EvolutionELEC 875 – Design Recovery and Automated Evolution

Analysis
• Prototype is lower level
◊ starting point is the code
◊ may also include comments

• Link Back to Code
◊ always important
◊ use to modify existing code
◊ knowledge of design is important, but only

useful if it helps you in the maintenance task
• Manual Intervention
◊ Design recovery includes abstract concepts.

Until real AI is created, human mind is still king.

ELEC 875 – Design Recovery and Automated Evolution

Analysis
• Informal Information
◊ semantics is not the only thing

- turing computable argument
◊ real systems do not contain random code

- they have to understand it and have some
confidence that it actually works

◊ naming conventions
◊ structural conventions

• One main goal is to help humans
◊ don’t underestimate humans

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery Architecture

Src
Code Extractor Design

Model

AnalysisReporter

Reports

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery Architecture

Src
Code Extractor Design

Model

AnalysisReporter

Reports

ELEC 875 – Design Recovery and Automated Evolution

Modeling -ER

Employee Departmentmember
1:∞ 0:1

managedBy
0:1

1:∞ No: int Name: string

ELEC 875 – Design Recovery and Automated Evolution

Modeling - Extended ER

Employee Departmentmember
1:∞ 0:1

managedBy
0:1

1:∞

Part Time Full Time Temp

No: int Name: string

Benefits: xyzzy Hours: int

ELEC 875 – Design Recovery and Automated Evolution

Modeling
• In traditional design (forward engineering), we model

the problem domain and incorporate that model into
the software in some manner.
◊ OOAD
◊ SA&D

• In design recovery, the problem domain is software.
Our model will consist of entities that represent
software artifacts (data is a program)

• Long Term Goal: to tie the model extracted from the
code to a traditional problem model

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery Architecture

Src
Code Extractor Design

Model

AnalysisReporter

Reports

ELEC 875 – Design Recovery and Automated Evolution

Base Model
• Entities and Relations in the Base Model directly

represent software artifacts
◊ source code elements

• Example Entities
◊ variables
◊ procedures
◊ types
◊ statements

ELEC 875 – Design Recovery and Automated Evolution

Base Model
• Example Relations
◊ calls (procedure calls a procedure)
◊ references (procedure references a variable)
◊ isFieldOf (field to structure or class)
◊ hasType (type of variable or function)
◊ ifPart (if statement ⇒ statement)

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Notes
• some entities have natural names
◊ variables
◊ procedures
◊ types
- names may be predefined or user defined

• some entities do not have natural names
◊ statements
◊ blocks
◊ constants

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Example
file main.c
 void printf(char *, …);
 char * foo(int);
 int main(int argc, char **argv){
 printf(“hello world%s”,foo(3)
 }

file foo.c
 char * foo(int x){
 return (“!\n”);
 }

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Example
Entities:

Files: main.c foo.c Functions: foo, main
Variables: argc, argv, x Prototypes: foo, printf
Constants: “hello world%s”, “!\n”
Types: void, int, char*, char**, char

Relations:
 Contains: (main.c,printf), (main.c, main), (main.c foo)
 Calls: (main,foo)
 Parameter: (main, argc), (main, argv), (foo,x)
 Argument: (foo,3)
 HasType: (main, int), (foo, char*), (argc, int), (argv,

char**), (x,int), (printf,void),(foo, char*)

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Issues
• Unique Naming
◊ some entities have the same name
◊ scoping
◊ name spaces (Java, C, C++)
◊ Model is a database, need a key for each entity
◊ different entity sets - keys needed only for same

entity sets and for entity sets that share relations
◊ solutions:

- unique id for each entity (CPPX, Columbus)
- name derived from scope (LS/2000)

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Issues
• Resolution
◊ sample model cannot connect arguments to

parameters (more than one call? more than one
argument?)

◊ Return value of foo?

• Organization
◊ Database practice - organize database to answer

common queries
◊ any given organization makes some queries hard,

other queries easy

ELEC 875 – Design Recovery and Automated Evolution

Design Recovery Architecture

Src
Code Extractor Design

Model

AnalysisReporter

Reports

ELEC 875 – Design Recovery and Automated Evolution

Derived Model
• built on top of the base model
◊ derived from information in the base model
◊ new relations between entities
◊ new entities for existing entity types
◊ new entity types
◊ new attributes

• Two types of derived information
◊ deterministic computed information

- implementation semantics, storage semantics
◊ inferred information (heuristics)

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Computed
• storage semantics
◊ programmers can and do play storage games

struct xyzzy{
 int x;
 float y;
};

- x is at offset 0 and is 4 bytes long
- y is at offset 4 and is 4 bytes long

• Big Endian/Little Endian

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Computed
• storage semantics
◊ programmers can and do play storage games

union xyzzy{
 int x;
 float y;
};

- x is at offset 0 and is 4 bytes long
- y is at offset 0 and is 4 bytes long

• x and y occupy the same memory

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Computed
struct xyzzy{
int type;
union {
 struct {
 …
 int x;
 …
 } option1;
 struct {
 …
 int y;
 …
 } option2;
} detail;

};

what if fields X and Y
have the same offset???

what if the programmer
intends them to have the
same offset??

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Computed
• BCD - binary coded decimal
• COMP-3 - BCD + Sign Nibble

8 1 0 1 5 2 9 7 3 2

8 1 0 1 5 2 9 7 3 ±

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Computed
• Cobol Data structures

01 A.
 05 B PIX XX.
 05 C.
 10 D PIC X.
 10 FILLER PIC X(3).
 05 F PIC 9(4).
 05 G REDEFINES F PIC XXXX.

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Computed
• BCD - binary coded decimal
• COMP-3 - BCD + Sign Nibble

01 CONV-REC.
 05 NUM-VAL PIC 99 COMP-3.
 05 ALPHA REDEFINES NUM-VAL.
 10 ALPHA-VAL PIC X.
 10 FILLER PIC X

MOVE INBYTE to ALPHA-VAL.
DIVIDE NUM-VAL BY 10.

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Resolution Issue
Relations:
 Contains: (main.c,printf), (main.c, main), (main.c foo)
 Calls: (main,foo)
 Parameter: (main, argc,1), (main, argv,2), (foo,x,1)
 Argument: (foo,3,1)
 HasType: (main, int), (foo, char*), (argc, int), (argv,

char**), (x,int), (printf,void),(foo, char*)

x = 3

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Resolution Issue
file main.c
 void printf(char *, …);
 void bar(int,int);
 int main(int argc, char **argv){
 foo(2,3);
 foo(atoi(argv[1]),atoi(argv[2]));
 }

file foo.c
 char * foo(int x, int y){
 …;
 }

ELEC 875 – Design Recovery and Automated Evolution

Base Model - Resolution Issue
file main.c
 void printf(char *, …);
 void bar(int,int);
 int main(int argc, char **argv){
 foo(2,atoi(argv[2]));
 foo(atoi(argv[1]),3);
 }

file foo.c
 char * foo(int x, int y){
 …;
 }

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Inferred
• Use other information to infer information about

entities.
• Y2K - Dates
◊ Names of Variables and Functions
◊ Storage Types of Fields
◊ Interaction with OS or with known API
◊ Domain Dependent Patterns

01 MTGSTD PIC 9(6).

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Inferred
• Use other information to infer information about

entities.
• Y2K - Dates
◊ Names of Variables and Functions
◊ Storage Types of Fields
◊ Interaction with OS or with known API
◊ Domain Dependent Patterns

01 CURRENT-DATE-YYMMDD PIC 9(6).
01 MTGSTD PIC 9(6).

IF MTGSTD > CURRENT-DATE-YYMMDD
 …

ELEC 875 – Design Recovery and Automated Evolution

Derived Model - Inferred
• Move to higher level of abstraction
• Business Rules, Business Types
• Goal:
◊ Link to problem model for program
◊ Employee Number, Customer Name, Customer

Address
◊ Where are they used?
◊ How are they related?

