ELEC 875 Design Recovery and Automated Evolution

Week 2 Class 1 Empirical Studies

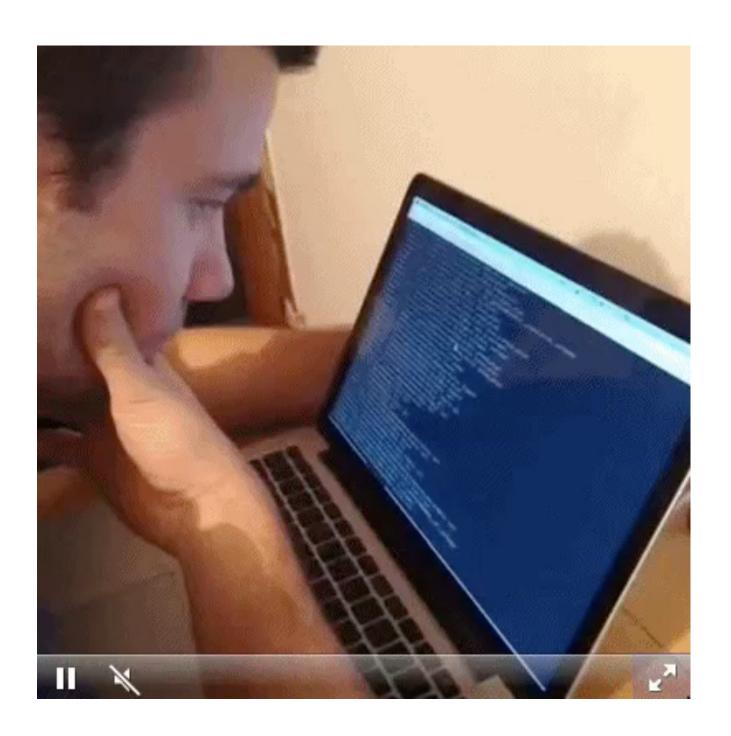
Empirical Studies

- Studies Software Engineers
 - ♦ what do they really do
 - what do they really need
- Difficult
 - ♦ multiple variables
 - ♦ expensive
 - students / professional developers
 - real/artificial projects
 - ♦ software engineers like other users are conditioned by their past
- Workshop on Empirical Studies of Software (WESS)

Lethbridge & Singer

- T.C. Lethbridge
 - ♦ School of Information Technology and Engineering, University of Ottawa
- J. Singer
 - ♦ National Research Council
- Study various companies in the Ottawa area

- Understanding Software Maintenance Tools: Some Empirical Research
- Overview paper of Empirical Research
- What is a Tool
 - Used by software engineer to perform a software engineering task
 - ♦ hierarchical tools
- 5 Questions
 - ♦ What tools and what tasks?
 - What differences do tools make?
 - ♦ Why use (or not use) a particular tool?
 - ♦ What new tools or improvements to tools?
 - ♦ How can tools be introduced to SEs?


- Measures
 - ♦ What tools are used
 - Number of times each tool is used
 - ♦ Elapsed time spend using a tool
 - ♦ Goals and tasks for particular usage of a tool
 - ♦ List of positive attributes
 - ♦ List of negative attributes
 - ♦ Time to perform a given task

- Data Collection
 - ♦ Questionnaires (web based)
 - ♦ Interviews
 - General structured interviews
 - 60-90 minutes, 10 page protocol (24 developers)
 - Regular debriefings (every few weeks)
 - 30-60 minutes
 - Tool reviews specific tool and subtotals
 - 30-60 minutes

- Data Collection
 - ♦ Observation
 - real work (30 minute session)
 - use same tools and techniques?
 - artificial tasks
 - ♦ Automated logging of tool use

- Data Interpretation
 - ♦ Small group of engineers
 - statistical sample?
 - defined process
 - domain specific (complex real-time software)
 - ♦ larger and more diverse groups?

- Observations
 - ♦ Most used tools editors
 - ♦ Second most used tools searching tools
 - ♦ Explore software as much as edit software
 - ♦ Wish list analysis tools
 - statistical sample?

- Positive Features of Tools
 - ♦ Ease of use
 - ♦ Useful tools
 - ♦ speed of tools
- Generic positive NF requirements

- Negative Features of Tools
 - ♦ lack of integration
 - don't want to manually transfer data between tools
 - wrong mix of features
- Difficulty introducing new tools
 - ♦ resistance to new tools
 - ♦ significant effort to learn new tool
 - will it be worth it?
 - train a single individual to act as consultant within user group

- Future Studies
 - collaboration between researchers (spread effort and cost)
 - questionnaires and logging tools in more companies (contacts)
 - observe different engineers in different environments using same tools
 - ♦ interviews with different groups of SEs
- Issues
 - ♦ Same questionnaires and interview protocols
 - similar methodologies training/experience/ presentation

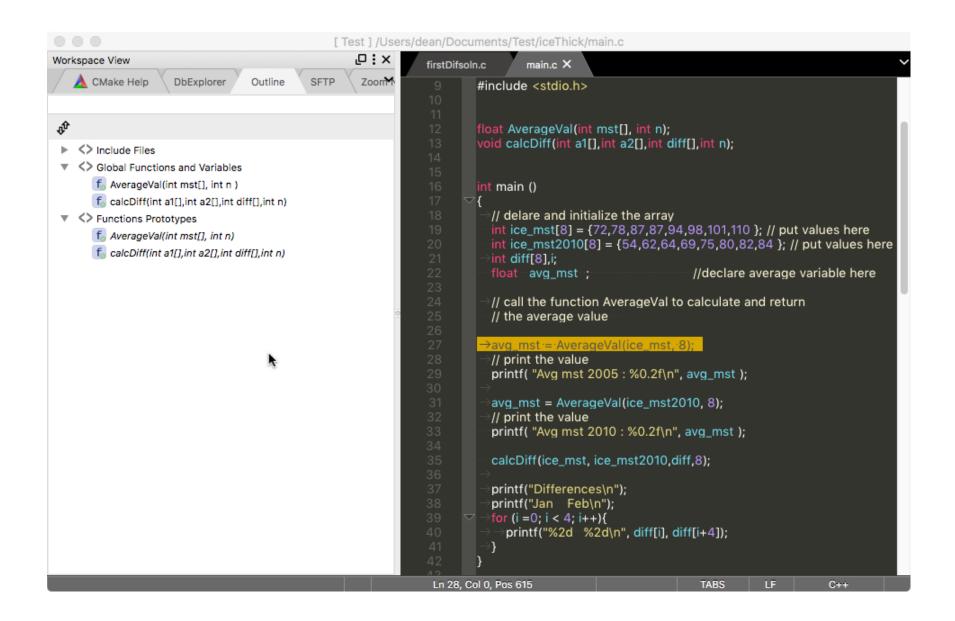
- Same Research, more Depth
 - identifies some problems with traditional ESP approaches
 - value of the total of the to
- Usability vs Useful
 - ♦ Usability clarity of interface
 - ♦ done in an artificial environment
 - isolated from other factors
 - user forced to use tool
 - ♦ does not guarantee that the software is useable
 - would he use the software

- Telecommunications company
 - ♦ several million lines of code (16k funcs, 8k files)
 - well defined process
- Survey
 - ♦ Reading Documentation tops the list
 - ♦ look at source
 - ♦ design near bottom of list
 - ♦ 57% of time fixing bugs, 35% of time making enhancements
 - differs from published norms, survey effect or difference in business?
 - ♦ Validity of surveys?

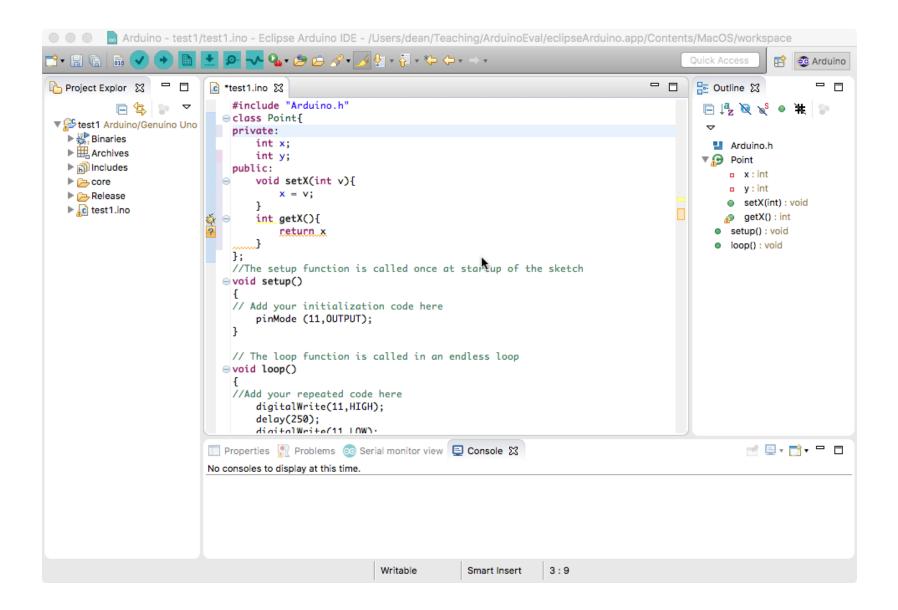
- Individual Study
 - ♦ new employee (experienced)
 - weekly meetings at start
 - ♦ 3 weeks apart later
 - ♦ mental model of system
 - ♦ tasks, "new" information
 - ♦ shadow user, record activities
 - observer effect?
 - ♦ search is most frequent activity

- Group Study
 - mental model of system
 - ♦ interviews
 - ♦ shadow user, record activities
 - ♦ looking at source, searching is most frequent activities
 - reading docs low on list (although high on survey)

- Company Study
 - ♦ company uses custom tools
 - ♦ tool group collects statistics on tool usage (tools log their usage)
 - ♦ compiles 41% most often
 - nightly builds
 - testing groups
 - excluded
 - ♦ search most frequent activity
 - ♦ editors low why?


- Results
 - ♦ search seems to be where SEs spend most of their time
 - improving search seems to present the greatest opportunity for support
- Just In Time Comprehension
 - ♦ system too large to comprehend
 - general understanding
 - task determines what is comprehended
 - ignore rest of problem

- Tool Functional Requirements
 - ♦ search for semantic entities in source code
 - display results of search and relationships
 - ♦ searches are repeated (history)
- Non-functional requirements
 - ♦ system size
 - ♦ performance
 - more than one language
 - ♦ interoperability
 - ♦ independent interfaces (research)
 - ♦ support JIC


- Problems with Existing Tools
 - ♦ grep
 - no syntax or semantics
 - does not understand relationships
 - time
 - ♦ editor searches
 - no semantics
 - ♦ IDEs
 - more semantics, limited languages
 - eclipse?
 - ♦ analysis tools
 - integration?

IDE

IDE - CodeLite

IDE - Eclipse

- Problems with Existing Tools
 - ♦ commercial browsing tools
 - sometimes no multiple languages (e.g. JNI)
 - some do support this
 - often limited integration
 - ♦ academic
 - problems with integration, speed, automation