
ELEC 875
Design Recovery

and
Automated Evolution

Week 2 Class 2
Context Free Grammars

and Parsing
Use in Models

Next Class Reading
• T. Lethbridge, E. Plödereder, S. Techelaar, C. Riva, P.

Linos, S. Marchenko, “The Dagstuhl Middle Model”
◊ DMM Schema
->http://www.site.uottawa.ca/~tcl/dmm/

DMMDescriptionV0006.pdf

• H. Fahmy, R.C. Holt and J.R. Cordy, "Wins and Losses
of Algebraic Transformations of Software
Architectures", Proc. ASE'2001, IEEE 16th International
Conference on Automated Software Engineering, San
Diego, November 2001, pp. 51-62.

ELEC 875 – Design Recovery and Automated Evolution

ELEC 875 – Design Recovery and Automated Evolution

Overview
• Scanning vs. Parsing
• Context Free Grammars
• TXL
• Languages and Language Features

ELEC 875 – Design Recovery and Automated Evolution

Scanning vs Parsing
• Compilers and most other language analysis

operates at two levels.
• Scanning - token level processing
• Parsing - tree level processing

ELEC 875 – Design Recovery and Automated Evolution

Scanning
• Lexical Analysis
• Tokens can be described as Regular Expressions
• Separate the input into tokens
• In most languages, scanning is separate from

parsing - scanner is called as a co-routine.
• Issues
◊ Some languages change scan rules on

instruction from the parser.
- Perl
- Embedded languages (SQL inside of COBOL)

◊ spaces, comments, file boundaries can be
important

ELEC 875 – Design Recovery and Automated Evolution

Scanning - embedded languages

if ($abc =~ /foo/)

if ($abc =~ /foo|bar*/)

ELEC 875 – Design Recovery and Automated Evolution

Scanning - embedded languages

01 NAME PIC X(20).
01 HRS PIC 999.
01 DEPARTMENT PIC X(20).
01 EMPNO PIC 999999.

MOVE 810153 TO EMPNO.
EXEC SQL
 SELECT NAME, HOURS, DEPT
 INTO :NAME, :HRS, :DEPARTMENT
 FROM EMPLOYEE
 WHERE EMPNO = :EMPNO
END-EXEC
….

ELEC 875 – Design Recovery and Automated Evolution

Scanning - embedded languages
PreparedStatement stmt = conn.prepareStatement(
 "SELECT NAME, HOURS, DEPT"
 + " SELECT NAME, HOURS, DEPT”
 + “ WHERE EMPNO = ?”);
stmt.setBigDecimal(810153, salary);
rs = stmt.executeQuery();
if (!rs.next()) {
}

empno = 810153;
#sql {
 SELECT NAME, HOURS, DEPT
 INTO :name, :hrs, :department
 SELECT NAME, HOURS, DEPT
 WHERE EMPNO = :empno
}

ELEC 875 – Design Recovery and Automated Evolution

Scanning Example
int main(int argc,char *argv)

Tokens:
identifier “int” star
space “ “ identifier “argv”
identifier “main” close bracket
open bracket newline
identifier “int”
space “ “
identifier “argc”
comma
identifier “char”
space “ “

ELEC 875 – Design Recovery and Automated Evolution

Context Free Grammars
• Context free grammar is a 4 tuple:

(VT,VN, S, P)
where:

VT is a finite set of terminal symbols (tokens)
VN is a finite set of non-terminal symbols
S ➞ VN is the start symbol
P is a set of rules or productions of the form
A ➞ α
where

A ∈ VN
α ∈ (VN ∪ VT)*

ELEC 875 – Design Recovery and Automated Evolution

Example
• Simple Precedence Expressions

VT = { id, number, +, -, *, /, (,) }
VN = { E, T, F }
S = E
P = E ➞ E + T

E ➞ E - T
E ➞ T
T ➞ T * F
T ➞ T / F
T ➞ F
F ➞ (E)
F ➞ id
F ➞ number

ELEC 875 – Design Recovery and Automated Evolution

Derivation of Sentences
• A Sentence of the grammar is a sequence of

terminal symbols that is derivable from the start
symbol and productions

• Start at goal symbol and replace elements of VN
using one of the productions.

• Each step is a derivation
• Done when all of the symbols are terminal

symbols

ELEC 875 – Design Recovery and Automated Evolution

Example Derivation
E E ➞ E + T
E + T E ➞ E - T
E - T + T E ➞ T
T - T + T T ➞ F
F - T + T F ➞ number
number - T + T T ➞ T * F
number - T * F + T T ➞ F
number - F * F + T F ➞ id
number - id * F + T F ➞ id
number - id * id + T T ➞ F
number - id * id + F F ➞ number
number - id * id + number

ELEC 875 – Design Recovery and Automated Evolution

Notes
• some tokens recognized as token classes
◊ id, number
◊ value of token is an attribute

• Leftmost Derivation
◊ leftmost symbol of each sentential form is

replaced
◊ what is a rightmost derivation?

• Grammar is Left Recursive
◊ problem for top down parsers

- TXL has heuristic to fix Left Recursive
Grammars

◊ Right Recursive?

ELEC 875 – Design Recovery and Automated Evolution

Parse Trees
• graph representation of derivations

E

E T+

E T+ F

T T numberF*

F F

number id

id

ELEC 875 – Design Recovery and Automated Evolution

Parsing
• Construct the derivation for a given input string
• If there is more than one parse tree for a given

input, the parse is ambiguous
◊ ambiguity can be useful

• For modern languages, parse trees reflect the
structure of the program
◊ Contents of a function are subtrees within the

parse tree of the function
• Compiler grammars may not be appropriate
◊ optimized for semantic analysis and code

generation
◊ optimized for speed for the parser

implementation

ELEC 875 – Design Recovery and Automated Evolution

Example
Program ➞ { VarDecl |Function | TypeDecl }

VarDecl ➞ TypeName VarList ‘;’

Function ➞ [TypeName] identifier FunctionHeader
Block

VarList ➞ identifer { ‘,’ VarList}

TypeName ➞ void | int | char | float | identifier

ELEC 875 – Design Recovery and Automated Evolution

Example (cont’d)
FunctionHeader ➞ ‘(‘ [ParmDecl { ‘,’ ParmDecl }] ‘)’

ParmDecl ➞ TypeName identifier

Block ➞ ‘{‘ { VarDecl | TypeDecl } { Stmt } ‘}’

Stmt ➞ IfStmt | AssignStmt | ProcCall | ... | Block

IfStmt ➞ if ‘(‘ Expr ‘)’ Stmt [‘else’ Stmt]

ELEC 875 – Design Recovery and Automated Evolution

TXL
• functional language
• grammar programming
• strongly typed language

• A TXL program consists of two parts
◊ grammar
◊ rules

ELEC 875 – Design Recovery and Automated Evolution

TXL

Source Parse Transform resultOutput

• 3 stages
◊ parse input (result is tree)
◊ run rules (change tree)
◊ generate output (unparse)

ELEC 875 – Design Recovery and Automated Evolution

TXL Grammar
• goal symbol is the symbol ‘program’

define program
[repeat element]

end define

define element
[varDecl] | [typeDecl] | [function]

end define

define function
[opt typeName] [id] [header] [body]

end define

ELEC 875 – Design Recovery and Automated Evolution

TXL Grammar
• grammar can be changed

include “Java.grammar”

redefine statement
...

 | [sqlj _statment]
end redefine

ELEC 875 – Design Recovery and Automated Evolution

TXL Rules
• rule has a pattern and a replacement
◊ search for pattern, replace by replacement
◊ may call sub-rules

define program
[repeat number]

end define
rule main

replace [repeat number]
N1 [number] N2 [number]
Rest [repeat number]

by
N1 [+ N2] Rest

end rule

ELEC 875 – Design Recovery and Automated Evolution

TXL Rules

45

Input: 45 56 32 34

56

32

34 empty

ELEC 875 – Design Recovery and Automated Evolution

TXL Rules

45

Input: 45 56 32 34

56

32

34 empty

replace [repeat number]
N1 [number] N2 [number]
Rest [repeat number]

ELEC 875 – Design Recovery and Automated Evolution

TXL Rules
Input: 45 56 32 34

101

32

34 empty

by
N1 [+ N2] Rest

ELEC 875 – Design Recovery and Automated Evolution

TXL Rules
• patterns must be parsable by the grammar
◊ construct partial tree

define program
[repeat number]

end define

rule main
replace [repeat number]

N1 [number] N2 [number]
Rest [repeat number]

by
N1 [+ N2] Rest

end rule

ELEC 875 – Design Recovery and Automated Evolution

TXL Rules
• pattern fails because there is only one number,

pattern requires two numbers

• pattern fails means program stops, and th tree is
output

empty167

• result: 167

ELEC 875 – Design Recovery and Automated Evolution

TXL Functions
• like rules
◊ only apply once
◊ apply only at top of tree (except searching

functions)

function fixFortranSubscript
replace [varRef]

ArrayName [id] (N [number] + V [id])
by

ArrayName (V + N)
end rule

ELEC 875 – Design Recovery and Automated Evolution

TXL Unification
• variables can place constraints on match

function optimizeAssign
replace [assignment]

V [id] = V + E [expression]
by

V += E
end rule

ELEC 875 – Design Recovery and Automated Evolution

Deconstruct
• refine patterns
◊ allow to pull apart subtrees matched in main

pattern

function fixFortranSubscript
replace [varRef]

ArrayName [id] (Sub [subscript])
deconstruct Sub

N [number] + V [id]
by

ArrayName (V + N)
end rule

ELEC 875 – Design Recovery and Automated Evolution

Where
• condition on values

function optimizeAssign2
replace [assignment]

Var [id] += N [number]
where

N [= 1]
by

V ++
end rule

ELEC 875 – Design Recovery and Automated Evolution

TXL Notes
• grammar is flexible. Can make changes specific to

the program you are writing
◊ Let the parser do the work!!
◊ Multiple passes, where each pass has a slightly

different grammar

• txl documentation
◊ www.txl.ca
◊ txl challenge

ELEC 875 – Design Recovery and Automated Evolution

Languages
• Top Languages (numbers are estimates)
◊ COBOL

- 500 billion to 1.5 trillion lines in 1998 (depends
on who you listen to)
- ~ 60-65% of existing code base
- 5 billion more lines by next year

◊ PL/I
- ~ 5% of existing code base

◊ RPG
- ~ 5% of existing code base

◊ rest is all other languages

ELEC 875 – Design Recovery and Automated Evolution

Language features
• variable declarations
◊ type, scope, storage layout
◊ int x;
◊ 05 X PIC 99V99.
◊ structured vars (COBOL, PL/I)

• type definitions
◊ simple types (typedef char * foo)
◊ compound types (records, structs, classes)

- slack bytes
◊ anonymous type definitions

struct { … } foobar

ELEC 875 – Design Recovery and Automated Evolution

Language features
• functions
◊ return type
◊ parameters

- type, reference, value, name, value-result
- type conversions

◊ calls to functions, arguments

• statements
◊ complete model?
◊ simplified model

MOVE A TO B, C
A = B + C

ELEC 875 – Design Recovery and Automated Evolution

Language features
• expressions
◊ types
◊ type conversions

• variable uses
◊ read/modify
◊ role (subscript?)
◊ values?

• I/O
◊ Languages with I/O (COBOL, PL/I)
◊ indexed files, key values

ELEC 875 – Design Recovery and Automated Evolution

Model Levels
Architectural

Middle

Low

Subsystems, Files

Functions, Methods, Variables

Statements, Expressions

ELEC 875 – Design Recovery and Automated Evolution

Towards a Std. Schema for C/C++
• several existing schemas
◊ Datrix/CPPX
◊ Columbus

• Separation of Tools
◊ Everyone has to write an extractor
◊ little research in new extractors (overhead)

• Complete Schemas
◊ full parse tree
◊ tool extracts information
◊ easier to extract information from database (?)

ELEC 875 – Design Recovery and Automated Evolution

Datrix
• Bell Canada
◊ Datrix Project
◊ C/C++/Java
◊ Templates only partially supported
◊ CPPX implementation

• Source Complete
◊ redundant parens eliminated
◊ CPPX is not source complete, but source

equivalent

ELEC 875 – Design Recovery and Automated Evolution

Columbus
• University of Szeged
◊ Source Complete - but no redundant parens
◊ Recently complete
◊ C/C++

ELEC 875 – Design Recovery and Automated Evolution

Representation
• Lexical
◊ preprocessing not modelled
◊ line/columns
◊ multiple files (mangle/namespace)

• Syntax
◊ AST - generate code by walking AST

– not completely true in both cases
– types are refers edges
– difficulties with templates

ELEC 875 – Design Recovery and Automated Evolution

Representation
• Syntax
◊ Datrix is based on semantic model of types
◊ Columbus is based on syntactic model of types
◊ tradeoffs?

• Statements
◊ both models completely model statements now

ELEC 875 – Design Recovery and Automated Evolution

Representation
• Naming
◊ each entity in a database has to have some

unique identifier
◊ Both use arbitrary numbers as identifiers
◊ names of entities are attributes
◊ C++ style mangles to link models

• Currently no closer to a standard model
◊ CPPX (Datrix) was used in Waterloo SWAG

project

ELEC 875 – Design Recovery and Automated Evolution

Datrix

ELEC 875 – Design Recovery and Automated Evolution

Datrix
char *x[]

Object
x

ArayType
char *[]

instance

Pointer Type
char

Built in Type
char

instance

instance

ELEC 875 – Design Recovery and Automated Evolution

Columbus

ELEC 875 – Design Recovery and Automated Evolution

Columbus
char * x[]

Variable
x

TypeRep

TypeRep

TypeForms

TypeFormArray

TypePrefix

TypeFormPtrTypeFormSpec

PrimSpec
name: char

typeformer(2)typeformer(1)

TypeSuffix

TypeForms

typeformer(1)

