
ELEC 875 – Design Recovery and Automated Evolution

ELEC 875
Design Recovery

and
Automated Evolution

Week 3
Grok and Standard

Transforms

ELEC 875 – Design Recovery and Automated Evolution

Next Week
Michael L. Van De Vanter, "The Documentary Structure of

Source Code" Journal of Information and Software
Technology, Elsevier, Volume 44, No 13, pp. 767-782

Vaclav Rajlich, N. Wilde, "The role of Concepts in
Program Comprehension" Proc. 2002 International
Workshop on Program Comprehension (IWPC'02),
June 2002, Paris, 271-278.

I.T. Bowman, R. Holt, N.V. Brewster, "Linux as a Case
Study: It's Extracted Software Architecture", Proc. 21st
International Conference on Software Engineering
(ICSE'99), May 1999, Los Angeles, pp. 555-563

ELEC 875 – Design Recovery and Automated Evolution

Relational Databases
• On Disk Data Structures
◊ optimized for huge databases

- many millions of records
◊ optimized for IT based queries
◊ select avg(sales)

from employee
where commission > 0.5

◊ select manager
from employee
where name = “James Higgins”

◊ allows update to small number of records
• Spectacular for these types of queries

ELEC 875 – Design Recovery and Automated Evolution

Program Analysis Queries
• example
◊ Common Ancestor Subsystem of Two modules

- equivalent IT query:
common boss of two employees

 - requires recursive SQL (in latest version)
◊ requires multiple queries to the same table

• updates to single records are rare
• often add entire derived relations to the database
• some individual queries
• Queries often need to use every record in the relation
• Relational DBs not optimized for these types of queries
◊ not surprising, very minuscule portion of database

use.

ELEC 875 – Design Recovery and Automated Evolution

Grok
• Initial Version in 1995, Ric Holt
• Optimized for large Databases
◊ hundreds of thousands of facts

• Heinlein - Stranger in a Strange Land
• Relational Algebra Calculator
◊ Discrete Math
◊ Sets and Relations

• Ram Based
◊ Queries tend to use entire relations at a time
◊ Recursive Queries

• 32 Bit only, java version called JGrok available

ELEC 875 – Design Recovery and Automated Evolution

Grok - Input of Relations
• RSF - Rigi Standard Format
◊ triple format
funcdef main main.c
defloc main “main.c:10”
include main.c stdio.h
calls main foo
sets foo x
parameter foo y

• Automatic discovery of domain and range sets
◊ just use names in relations

• Attributes are just another relation

ELEC 875 – Design Recovery and Automated Evolution

Grok - Input of Relations
• TA - Tuple Attribute format
◊ ER based notation
◊ Definition of instances
◊ Attributes instead of relations
funcdef main main.c
defloc main “main.c:10”

$INSTANCE main {defloc = “main.c:10”}

◊ Relations can also be extended

◊ translated to RSF internally

ELEC 875 – Design Recovery and Automated Evolution

Grok - Input of Relations
• TA -Schema Definition
◊ Allows the user to specify the schema of the

data
◊ Not explicitly checked
◊ Schema is also compiled into relations
◊ Can write a grok program that checks the data

against the schema
- already done

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Sets
◊ construction

functions = { “main”, “foo”, “bar”, “bat” }
vars = { “m”, “x”, “y” }
refs = {“x”, “z”}

◊ union/intersection/complement
ents = functions + vars
vrefs = vars ^ refs
vnrefs = vars - refs

◊ cardinality
numvars = #vars

◊ sets can be read and written to files, one entity per
line

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Relations
◊ Cross Product

foo = functions X refs
◊ Relations are sets of tuples, so all set operators

work on relations in the obvious way
◊ domain/range(codomain)

f = dom foo
r = rng refs

◊ relation composition
h = f o g == { (x,y) | y = g(f(x))}

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Relations
◊ Id constructor (S is a set)

r = id S === {(x,x)} for all x in S
◊ inverse (n is a relation)

m = inv n ----- i.e. n-1

◊ transitive closure
R+

◊ Transitive, reflexive closure
R*

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Sets and Relations
◊ projection (s is set, R is relation)

s.R = { y | x in S and (x,y) in R)}
 R.s = s . inv R

{“f”,”g”} . invokes == all functions invoked by f
and g

{“f”,”g”} . invokes+ = all functions invoked
directly or indirectly by f and g

{“f”,”g”} . invokes* = all functions invoked
directly or indirectly by f and g including f and
g.

ELEC 875 – Design Recovery and Automated Evolution

Grok - Scripting
• Grok also has a scripting language:
◊ conditionals (if)
◊ looping
◊ arguments
◊ file io

• Other numerous options including options to ask
for names of sets, relations and variables, string
operations, id operations, file I/O

ELEC 875 – Design Recovery and Automated Evolution

Relational Algebra Practice..
isSubclassOf

kind

Field

t_date

Field

int

Type

isOfType isOfType

date

Class

transact

Class

contains contains

year

Field

day

Field

contains contains

isOfType

isOfType

transfer

Class

from

Field

to

Field

contains contains

deposit

Class

to

Field

contains

isSubclassOf

acct

Type
isOfType

isOfType

isOfType

isDefinedInTermsOf

the types of all fields of subclasses of the class ‘transact’

ELEC 875 – Design Recovery and Automated Evolution

Wins and Losses..
• General maintenance queries

• Some easy (win), some not so easy (loss)

ELEC 875 – Design Recovery and Automated Evolution

Standard Relations
• Contains - in DMM
 C := inv defines* o contains o defines*
• Use relation
 - routine uses a var, or a routine invokes a function

U := sets + uses + invokes

• Parent (P := inv C)
• Sibling (S := P o C - ID)
• Descendent D := C+
• Ancestor A:= P+

ELEC 875 – Design Recovery and Automated Evolution

Lifting
• a routine/method invokes a

routine/method in DMM
• a routine/method sets/uses a

variable (g/f/l)

• Want to compute relation
between classes/files

 HLU := (D o U o A) - ID - D - A

defines * allows us to use source
elements

ELEC 875 – Design Recovery and Automated Evolution

Lifting
• Sometimes need to filter to a

layer

• If more than two levels, links
all

 HLU := (D o U o A) - ID - D - A

• Restrict to a Layer
- HLU2 := HLU ^ (S x S)

S

ELEC 875 – Design Recovery and Automated Evolution

Hide Interior
• Hide nodes "inside" a given element
 - i.e. contained...
 - includes a lift as part of the transformation(NewU)

S:= { "the element" }
SD := S . D the set of all elements contained
TargU := SD . U - SD all nodes used by SD
SrcU := U . SD - SD all nodes that use SD
NewU := (S x TarU) all nodes used by SD are used by S
 +(SrcU x S) all nodes that use SD use S
delset SD

ELEC 875 – Design Recovery and Automated Evolution

Others
• Hide Exterior - narrow the graph to a particular

subsystem
• Diagnostic - for a given lifted edge, find the lower

level edge that caused it
• Sifting - finding nodes with a given characteristic

- example is nodes that only used are leaf nodes,
while nodes that use others are higher

• Kidnapping - refactoring
- method or field that is used more by other classes?
- routine in wrong file?
- does not actually change the code (what-if)

ELEC 875 – Design Recovery and Automated Evolution

Losses
• patterns must be specified in relational algebra
 - no real memory between queries, or of paths.

- grok has scripting, and imperative statements, so can
build relations iteratively keeping temporary results

 - no longer pure relational algebra

ELEC 875 – Design Recovery and Automated Evolution

Current Status
• Grok is older, written in Turing Plus

- 32bit version for Linux
• jgrok is available, written in java and jar files

- Source code available.

ELEC 875 – Design Recovery and Automated Evolution

Alternatives
• graph database servers (e.g. graphdb)

- RDF (XML based triples)
- SPARQL query language

• Ontology + Inferencing
- e.g. can specify usesObject and usesComponent

are subclasses of uses relation.
- e.g. can add rules that infer higher level

concepts from lower level concepts

ELEC 875 – Design Recovery and Automated Evolution

Graph Database

Function
foo

Function
bar

Function
bat

Variable
b

Variable
c

Variable
a

calls calls

uses uses

ELEC 875 – Design Recovery and Automated Evolution

Graph Database
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://pyxis.ece.queensu.ca/dmm#> .

:DMMEntity a rdfs:Class .
:Function rdfs:subClassOf :DMMEntity .
:Variable rdfs:subClassOf :DMMEntity .

:calls a rdf:Property .
:calls rdfs:domain :Function .
:calls rdfs:range :Function .

:uses a rdf:Property .
:uses rdfs:domain :Function .
:uses rdfs:range :Variable .

ELEC 875 – Design Recovery and Automated Evolution

Graph Database
:foo a :Function .
:bar a :Function .
:bat a Function .
:a a :Variable .
:b a :Variable .
:c a :Variable .

:foo :calls :bar .
:bar :calls :bat .

:bar :uses :a .
:bat :uses :c .

ELEC 875 – Design Recovery and Automated Evolution

SPARQL Queries
PREFIX : <http://pyxis.ece.queensu.ca/dmm#>
select ?v where {

:foo :calls+/:uses ?v .
}

- variables used by functions called by foo (a,c)

PREFIX : <http://pyxis.ece.queensu.ca/dmm#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select * where {
 ?v rdf:type :Variable .
 FILTER (
 NOT EXISTS { ?f :uses ?v .}
)
}

- unused variables (b)

