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Relational Databases
• On Disk Data Structures
◊ optimized for huge databases

- many millions of records
◊ optimized for IT based queries
◊ select avg(sales)

from employee
where commission > 0.5

◊ select manager
from employee
where name = “James Higgins”

◊ allows update to small number of records
• Spectacular for these types of queries
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Program Analysis Queries
• example
◊ Common Ancestor Subsystem of Two modules

- equivalent IT query:
common boss of two employees

 - requires recursive SQL (in latest version)
◊ requires multiple queries to the same table

• updates to single records are rare
• often add entire derived relations to the database
• some individual queries
• Queries often need to use every record in the relation
• Relational DBs not optimized for these types of queries
◊ not surprising,  very minuscule portion of database 

use.
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Grok
• Initial Version in 1995, Ric Holt
• Optimized for large Databases
◊ hundreds of thousands of facts

• Heinlein - Stranger in a Strange Land
• Relational Algebra Calculator
◊ Discrete Math
◊ Sets and Relations

• Ram Based
◊ Queries tend to use entire relations at a time
◊ Recursive Queries

• 32 Bit only, java version called JGrok available
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Grok - Input of Relations
• RSF - Rigi Standard Format
◊ triple format
funcdef main main.c
defloc main “main.c:10”
include main.c stdio.h
calls main foo
sets foo x
parameter foo y

• Automatic discovery of domain and range sets
◊ just use names in relations

• Attributes are just another relation
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Grok - Input of Relations
• TA - Tuple Attribute format
◊ ER based notation
◊ Definition of instances
◊ Attributes instead of relations 
funcdef main main.c
defloc main “main.c:10”

$INSTANCE main {defloc = “main.c:10”}

◊ Relations can also be extended

◊ translated to RSF internally
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Grok - Input of Relations
• TA -Schema Definition
◊ Allows the user to specify the schema of the 

data
◊ Not explicitly checked
◊ Schema is also compiled into relations
◊ Can write a grok program that checks the data 

against the schema 
- already done
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Grok - Operators 
• Sets
◊ construction

functions = { “main”, “foo”, “bar”, “bat” }
vars  = { “m”, “x”, “y” }
refs = {“x”, “z”}

◊ union/intersection/complement
ents = functions + vars
vrefs = vars ^ refs
vnrefs = vars - refs

◊  cardinality
numvars = #vars

◊ sets can be read and written to files, one entity per 
line
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Grok - Operators 
• Relations
◊ Cross Product

foo = functions X refs
◊  Relations are sets of tuples, so all set operators 

work on relations in the obvious way
◊ domain/range(codomain)

f = dom foo
r = rng refs

◊ relation composition
h = f o g  ==  { (x,y) | y = g(f(x))}
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Grok - Operators 
• Relations
◊ Id constructor (S is a set)

r  = id S  === {(x,x)} for all x in S
◊ inverse  (n is a relation)

m = inv n ----- i.e. n-1

◊ transitive closure
R+

◊ Transitive, reflexive closure
R*
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Grok - Operators 
• Sets and Relations
◊ projection (s is set, R is relation)

s.R  = { y | x in S and (x,y) in R)}
    R.s = s . inv R

{“f”,”g”} . invokes  == all functions invoked by f 
and g

{“f”,”g”} . invokes+ = all functions invoked 
directly or indirectly by f and g 

{“f”,”g”} . invokes* = all functions invoked 
directly or indirectly by f and g including f and 
g.
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Grok - Scripting 
• Grok also has a scripting language:
◊ conditionals (if)
◊ looping
◊ arguments
◊ file io

• Other numerous options including options to ask 
for names of sets, relations and variables, string 
operations, id operations, file I/O
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Relational Algebra Practice..
isSubclassOf
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Field

t_date

Field

int

Type

isOfType isOfType

date

Class

transact

Class

contains contains

year

Field

day

Field

contains contains

isOfType

isOfType

transfer

Class

from

Field

to

Field

contains contains

deposit

Class

to

Field

contains
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acct

Type
isOfType

isOfType

isOfType

isDefinedInTermsOf

the types of all fields of subclasses of the class ‘transact’
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Wins and Losses..
• General maintenance queries

• Some easy (win), some not so easy (loss)
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Standard Relations
• Contains - in DMM
   C := inv defines* o contains o defines*
• Use relation
    - routine uses a var, or a routine invokes a function

U := sets + uses + invokes

• Parent (P := inv C)
• Sibling (S :=  P o C - ID)
• Descendent D := C+
• Ancestor A:= P+
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Lifting
• a routine/method invokes a 

routine/method in DMM
• a routine/method sets/uses a 

variable (g/f/l)

• Want to compute relation 
between classes/files

    HLU := (D o U o A) - ID - D - A

defines * allows us to use source 
elements



ELEC 875 – Design Recovery and Automated Evolution

Lifting
• Sometimes need to filter to a 

layer

• If more than two levels, links 
all

    HLU := (D o U o A) - ID - D - A

• Restrict to a Layer
- HLU2 := HLU ^ (S x S)

S
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Hide Interior
• Hide nodes "inside" a given element
    - i.e. contained...
    - includes a lift as part of the transformation(NewU)

S:= { "the element" }
SD := S . D the set of all elements contained
TargU := SD . U - SD all nodes used by SD
SrcU := U . SD - SD all nodes that use SD
NewU := (S x TarU) all nodes used by SD are used by S
              +(SrcU x S) all nodes that use SD use S
delset SD
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Others
• Hide Exterior - narrow the graph to a particular 

subsystem
• Diagnostic - for a given lifted edge, find the lower 

level edge that caused it
• Sifting - finding nodes with a given characteristic

- example is nodes that only used are leaf nodes, 
while nodes that use others are higher

• Kidnapping - refactoring
- method or field that is used more by other classes?
- routine in wrong file?
- does not actually change the code (what-if)
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Losses
• patterns must be specified in relational algebra
   - no real memory between queries, or of paths.

- grok has scripting, and imperative statements, so can 
build relations iteratively keeping temporary results

      - no longer pure relational algebra
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Current Status
• Grok is older, written in Turing Plus

- 32bit version for Linux
• jgrok is available, written in java and jar files

- Source code available.
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Alternatives
• graph database servers (e.g. graphdb)

- RDF (XML based triples)
- SPARQL query language

• Ontology + Inferencing
- e.g. can specify usesObject and usesComponent 

are subclasses of uses relation.
- e.g. can add rules that infer higher level 

concepts from lower level concepts



ELEC 875 – Design Recovery and Automated Evolution

Graph Database

Function
foo

Function
bar

Function
bat

Variable
b

Variable
c

Variable
a

calls calls

uses uses
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Graph Database
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://pyxis.ece.queensu.ca/dmm#> .

:DMMEntity a rdfs:Class .
:Function rdfs:subClassOf :DMMEntity .
:Variable rdfs:subClassOf :DMMEntity .

:calls a rdf:Property .
:calls  rdfs:domain :Function .
:calls  rdfs:range :Function .

:uses a rdf:Property .
:uses rdfs:domain :Function . 
:uses rdfs:range :Variable .
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Graph Database
:foo a :Function .
:bar a :Function .
:bat a Function .
:a a :Variable .
:b a :Variable .
:c a :Variable .

:foo :calls :bar .
:bar :calls :bat .

:bar :uses :a .
:bat :uses :c .
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SPARQL Queries
PREFIX : <http://pyxis.ece.queensu.ca/dmm#>
select ?v where { 

:foo :calls+/:uses ?v .
}

- variables used by functions called by foo (a,c)

PREFIX : <http://pyxis.ece.queensu.ca/dmm#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
select * where {
    ?v rdf:type :Variable .
    FILTER (
    NOT EXISTS { ?f :uses ?v .}
    )
}

- unused variables (b)


