ELEC 875

Design Recovery
and
Automated Evolution

Week 3
Grok and Standard

Transforms

Next Week

Michael L. Van De Vanter, "The Documentary Structure of
Source Code" Journal of Information and Software
Technology, Elsevier, Volume 44, No 13, pp. 767-782

Vaclav Rajlich, N. Wilde, "The role of Concepts in
Program Comprehension" Proc. 2002 International
Workshop on Program Comprehension (IWPC'02),
June 2002, Paris, 271-278.

[.T. Bowman, R. Holt, N.V. Brewster, "Linux as a Case

Study: It's Extracted Software Architecture”, Proc. 21st

International Conference on Software Engineering
(ICSE'99), May 1999, Los Angeles, pp. 555-563

ELEC 875 — Design Recovery and Automated Evolution

Relational Databases

* On Disk Data Structures
¢ optimized for huge databases
- many millions of records
¢ optimized for IT based queries
0 select avg(sales)
from employee
where commission > 0.5
0 select manager
from employee
where name = “James Higgins"”
0 allows update to small number of records

e Spectacular for these types of queries
ELEC 875 — Design Recovery and Automated Evolution

Program Analysis Queries

* example
¢ Common Ancestor Subsystem of Two modules
- equivalent IT query:
common boss of two employees
- requires recursive SQL (in latest version)
0 requires multiple queries to the same table
e updates to single records are rare
e often add entire derived relations to the database
e some individual queries
e Queries often need to use every record in the relation
e Relational DBs not optimized for these types of queries
¢ not surprising, very minuscule portion of database

use.
ELEC 875 — Design Recovery and Automated Evolution

Grok
e Initial Version in 1995, Ric Holt
* Optimized for large Databases
¢ hundreds of thousands of facts
e Heinlein - Stranger in a Strange Land
e Relational Algebra Calculator
¢ Discrete Math
¢ Sets and Relations
¢ Ram Based
¢ Queries tend to use entire relations at a time
¢ Recursive Queries
e 32 Bit only, java version called JGrok available

ELEC 875 — Design Recovery and Automated Evolution

Grok - Input of Relations

e RSF - Rigi Standard Format

O triple format

funcdef main main.c
defloc main “main.c:10"”
include main.c stdio.h
calls main foo

sets foo x

parameter foo y

e Automatic discovery of domain and range sets
0 just use names in relations
e Attributes are just another relation

ELEC 875 — Design Recovery and Automated Evolution

Grok - Input of Relations

e TA - Tuple Attribute format
¢ ER based notation
¢ Definition of instances

¢ Attributes instead of relations
funcdef main main.c
defloc main “main.c:10”

SINSTANCE main {defloc = “main.c:10"}

¢ Relations can also be extended

0 translated to RSF internally

ELEC 875 — Design Recovery and Automated Evolution

Grok - Input of Relations
e TA -Schema Definition

¢ Allows the user to specify the schema of the
data

¢ Not explicitly checked

Schema is also compiled into relations

¢ Can write a grok program that checks the data

<>

against the schema
- already done

ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

e Sets
¢ construction
functions — { llmaj_n”, IIfOOII, Ilbar,,, llbatll }

£ VA VS / A s) 4 }
4

vars ={“m”, “x
refs = {“x”, “z"}
¢ union/intersection/complement
ents = functions + vars
vrefs = vars ” refs
vnrefs = vars - refs
¢ cardinality
numvars = #vars
0 sets can be read and written to files, one entity per

line
ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

* Relations

¢ Cross Product
foo = functions X refs

0 Relations are sets of tuples, so all set operators
work on relations in the obvious way

¢ domain/range(codomain)
f = dom foo
r = rng refs

O relation composition

h=fog == {(xy) | y=gXx))}

ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

e Relations
¢ Id constructor (S is a set)
r =id S === {(x,x)} for all xin S
¢ inverse (n is a relation)
m = 1nv n ----- 1.e. n’'l
¢ transitive closure
R+
¢ Transitive, reflexive closure
R*

ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

* Sets and Relations
O projection (s is set, R is relation)
s.R ={y | xin S and (x,y) in R)}
Rs=s.mnvR

{“t”,”¢”} . invokes == all functions invoked by f
and g

{“t”,”g"”} . invokes+ = all functions invoked
directly or indirectly by f and g

{“t”,”g”} . invokes™ = all functions invoked

directly or indirectly by f and g including f and
g.

ELEC 875 — Design Recovery and Automated Evolution

Grok - Scripting

e Grok also has a scripting language:
¢ conditionals (if)
0 looping
¢ arguments
0 file io

e Other numerous options including options to ask
for names of sets, relations and variables, string
operations, id operations, file I/ O

ELEC 875 — Design Recovery and Automated Evolution

Relational Algebra Practice..

Class < isSubclassOf Class
transact transfer
contains / ¢contains isSubclassOf contains’/ ¢contains
Field Field Field Field
Class
kind t date , from to
deposit ;
isOfType ¢ *lsOnype contains ¢ isOfType
—pp{ Tvpoe Class
E— Field
—p| int date
| to \ isOfType
contains contains isOfType
Field |[Field Type
isOfType | year day acct
|
isOfType
isDefinedIinTermsOf

the types of all fields of subclasses of the class ‘transact’

ELEC 875 — Design Recovery and Automated Evolution

Wins and Losses..

* General maintenance queries

e Some easy (win), some not so easy (loss)

ELEC 875 — Design Recovery and Automated Evolution

Standard Relations

e Contains - in DMM
C :=inv defines™ o contains o defines”
e Use relation
- routine uses a var, or a routine invokes a function
U := sets + uses + invokes

e Parent (P :=inv C)

e Sibling (S:= Po C-1D)
¢ Descendent D := C+

e Ancestor A:= P+

ELEC 875 — Design Recovery and Automated Evolution

Lifting

e aroutine/method invokes a
routine / method in DMM

e a routine/method sets/uses a
variable (g/f/1)

 Want to compute relation /
between classes/ files

HLU:=(DoUoA)-ID-D-A

defines * allows us to use source

elements

ELEC 875 — Design Recovery and Automated Evolution

Lifting

e Sometimes need to filter to a

layer /

e If more than two levels, links S -]
all —
HLU:=(DoUoA)-ID-D-A j o

ISR

* Restrict to a Layer
-HLU2 :=HLU ~ (5x5) /

L

ELEC 875 — Design Recovery and Automated Evolution

Hide Interior

 Hide nodes "inside" a given element
- 1.e. contained...
- includes a lift as part of the transformation(NewU)

S:={ "the element" }

SD :=5. D the set of all elements contained

TargU :=5D . U - SD all nodes used by SD

SrcU :=U . SD - SD all nodes that use SD

NewU := (S x TarU) all nodes used by SD are used by S
+(SrcU x S) all nodes that use SD use S

delset SD

ELEC 875 — Design Recovery and Automated Evolution

Others

e Hide Exterior - narrow the graph to a particular
subsystem

e Diagnostic - for a given lifted edge, find the lower
level edge that caused it

e Sifting - finding nodes with a given characteristic
- example is nodes that only used are leaf nodes,

while nodes that use others are higher

* Kidnapping - refactoring
- method or field that is used more by other classes?
- routine in wrong file?
- does not actually change the code (what-if)

ELEC 875 — Design Recovery and Automated Evolution

[.osses

e patterns must be specified in relational algebra
- no real memory between queries, or of paths.

- grok has scripting, and imperative statements, so can

build relations iteratively keeping temporary results
- no longer pure relational algebra

ELEC 875 — Design Recovery and Automated Evolution

Current Status

e Grok is older, written in Turing Plus
- 32bit version for Linux

* jgrok is available, written in java and jar files
- Source code available.

ELEC 875 — Design Recovery and Automated Evolution

Alternatives

e graph database servers (e.g. graphdb)
— RDF (XML based triples)
- SPARQL query language
* Ontology + Inferencing
- e.g. can specify usesObject and usesComponent
are subclasses of uses relation.
- e.g. can add rules that infer higher level
concepts from lower level concepts

ELEC 875 — Design Recovery and Automated Evolution

Graph Database

Function calls . Function calls . | Function

foo bar bat
‘Aes luses
Variable Variable Variable
a b C

ELEC 875 — Design Recovery and Automated Evolution

Graph Database

@prefix rdfs: <http:/ /www.w3.0rg/2000/01 /rdf-schema#> .
@prefix rdf: <http:/ /www.w3.org/1999/02 /22-rdf-syntax-ns#> .
@prefix : <http:/ / pyxis.ece.queensu.ca/dmm#> .

:DMMEntity a rdfs:Class .
:Function rdfs:subClassOf :DMMEntity .
:Variable rdfs:subClassOf :DMMEntity .

:calls a rdf:Property .
:calls rdfs:domain :Function .
:calls rdfs:range :Function .

ruses a rdf:Property .
ruses rdfs:domain :Function .
ruses rdfs:range :Variable .

ELEC 875 — Design Recovery and Automated Evolution

Graph Database

:foo a :Function .
:bar a :Function .
:bat a Function .
:a a :Variable .
:b a :Variable .

:Cc a :Variable .

:foo :calls :bar .
:bar :calls :bat .

:bar :uses :a .
:bat :uses :c.

ELEC 875 — Design Recovery and Automated Evolution

SPARQL Queries

PREFIX : <http:/ / pyxis.ece.queensu.ca/dmm# >
select ?v where {
:foo :calls+/:uses ?v .

- variables used by functions called by foo (a,c)

PREFIX : <http:/ / pyxis.ece.queensu.ca/dmm#>
PREFIX rdf: <http:/ /www.w3.org/1999/02 /22-rdf-syntax-ns#>
select * where {

?v rdf:type :Variable .
FILTER (

NOT EXISTS { ?f :uses ?v .}
)
}

- unused variables (b)

ELEC 875 — Design Recovery and Automated Evolution

