
ELEC 875 – Design Recovery and Automated Evolution

ELEC 875
Design Recovery

and
Automated Evolution

Documentary Structure

ELEC 875 – Design Recovery and Automated Evolution

Van De Vanter - Background
• Michael Van De Vanter
• Worked at Sun (now Oracle)
◊ programming environments
◊ editors
◊ code is in process of being edited

- almost always ‘broken’

• I want to move to a more discussion based format
today

ELEC 875 – Design Recovery and Automated Evolution

Documentary Structure of Src Code
• Most tools based on formal structure of source code
◊ linguistic structure
◊ syntax trees
◊ lexical structure
◊ mimic compilers

• requires correct or at least (parseable) code
◊ the formal linguistic part is what is executing

– final authority on meaning of the system
◊ Analysis of legacy code

ELEC 875 – Design Recovery and Automated Evolution

Correct Parseable Code?
• Robust Parsing
◊ van Deursen and Kuipers (1999)
◊ Moonen (2001)
◊ Dean, Cordy, Malton and Schneider (2003)

• island grammars
◊ represent the grammar as interesting elements

(islands) in a sea of water
◊ only the islands need be correct.
◊ concept nests (island may have lakes which may

have islands …)

ELEC 875 – Design Recovery and Automated Evolution

Island Grammar
define program
 [repeat element]
end define

define element
 [function]
 | [water]
end define

define water
 [token] | [key]
end define

ELEC 875 – Design Recovery and Automated Evolution

Island Grammar
define function
 [id] [repeat '*] [id] '([repeat parm] ')
 [block]
end define

define parm
 [id] [repeat '*] [id] [repeat suffix]
end define

ELEC 875 – Design Recovery and Automated Evolution

Island Grammar
define block
 '{
 [repeat body_element]
 '}
end define

define body_element
 [block]
 | [water]
end define

ELEC 875 – Design Recovery and Automated Evolution

Island Grammar
• Find elements without parsing code
◊ function headers
◊ embedded sql
◊ specific api calls (within limits)
◊ distinct markers in syntax.

ELEC 875 – Design Recovery and Automated Evolution

Documentary Structure
• Part of the program that is not formally part of the

language
◊ sole purpose is aiding the human reader

- one of the main purpose of linguistic code is also
human comprehension

• formatting
• comments
• inter token spacing
• line breaks
• Issues covered in Ugrad Soft Engineering
• Religious wars

ELEC 875 – Design Recovery and Automated Evolution

Documentary Structure
• example: brace styles in C

if () { if ()
 ... K&R {
} ... GNU

 }
if ()
{ if ()
 BSD/Allman {
} ... Whitesmith

 }

ELEC 875 – Design Recovery and Automated Evolution

Formal Language
• Documentary structure is outside of formal language
◊ orthogonal
◊ compilers discard information

- biggerstaff minimized programs

• Source Code is a document
• Human as well as machine components
• Information that cannot be derived from semantics

- similar to biggerstaff

ELEC 875 – Design Recovery and Automated Evolution

Structural Mismatch
• Transformation and Restructuring tools have

problems with comments and formatting
• Since compilers have treated comments as whitespace,

many different conventions to the use of comments
◊ many different ways to format comments
◊ different ways of associating comments with code
◊ almost any heuristic for transformation is bound to

be wrong
• Syntax based editors failed in part because they tried

to enforce specific commenting conventions

ELEC 875 – Design Recovery and Automated Evolution

Comments
• Notion of a single comment is not well defined
◊ comment boundaries
◊ white space in comments

• structural referent of a comment is not well defined
◊ comments placed in strange places

• Meaning of a comment depends on white space and
natural language concerns
◊ subject changes in comments

ELEC 875 – Design Recovery and Automated Evolution

Structural Referent
• Comments do refer to structural entities
◊ finding them are difficult for software
◊ easy for humans (noise ignored by humans).
◊ semantics of words involved

• Two dimensional concepts
◊ analysis software tends to be one dimensional

• Structural referents may be missing
◊ example in paper: while compilers throw away

empty else clauses, many analysis tools keep them
because they are important

ELEC 875 – Design Recovery and Automated Evolution

Structural Referent?
const int hexVal[256] = {
 -1, -1, -1, -1, -1, -1, -1, -1, // null-bell
 -1, -1, -1, -1, -1, -1, -1, -1, // bs - si
 -1, -1, -1, -1, -1, -1, -1, -1, // dle - etb
 -1, -1, -1, -1, -1, -1, -1, -1, // can - us
 -1, -1, -1, -1, -1, -1, -1, -1, // sp ! " # $ % & '
 -1, -1, -1, -1, -1, -1, -1, -1, // () * + , - . /
 0, 1, 2, 3, 4, 5, 6, 7, // 0 1 2 3 4 5 6 7
 8, 9, -1, -1, -1, -1, -1, -1, // 8 9 : ; < = > ?
 -1, 10, 11, 12, 13, 14, 15, -1, // @ A B C D E F G
 -1, -1, -1, -1, -1, -1, -1, -1, // H I J K L M N O
 -1, -1, -1, -1, -1, -1, -1, -1, // P Q R S T U V W
 -1, -1, -1, -1, -1, -1, -1, -1, // X Y Z [\] ^ _
 -1, 10, 11, 12, 13, 14, 15, -1, // ` a b c d e f g
 -1, -1, -1, -1, -1, -1, -1, -1, // h i j k l m n o
 -1, -1, -1, -1, -1, -1, -1, -1, // p q r s t u v w
 -1, -1, -1, -1, -1, -1, -1, -1, // x y z { | } ~ del
 …
};

ELEC 875 – Design Recovery and Automated Evolution

Naming Convention
• CamelCase
• under_scores
• ALLCAPS

• Empirical studies have shown no real advantage to
any.
◊ Consistent use is more important
◊ Use each one for a different type of id.
– ALLCAPS for C defines
– Java: Leading Cap for Class, leading lowercase for

fields/methods

ELEC 875 – Design Recovery and Automated Evolution

Approaches
• Hand crafted patches
• Automated (LS/2000)
• Unparsing

ELEC 875 – Design Recovery and Automated Evolution

Van De Vanter
• Discussion

ELEC 875 – Design Recovery and Automated Evolution

Analysis Graphs
• AST/ASG
• Control Flow Graph
• Data Dependency Graph

• Analysis technique: Slicing

ELEC 875 – Design Recovery and Automated Evolution

AST/ASG
• AST - Abstract Syntax Tree
◊ Parse Tree based on an abstract grammar
◊ Not a compiler specific grammar

• ASG - Abstract Syntax Graph
◊ AST + edges
◊ edges from variable reference nodes back to variable

declaration nodes
◊ edges from expression nodes to types to indicate

types of operations
◊ invokes edges from call exprs to function defns

ELEC 875 – Design Recovery and Automated Evolution

Control Flow Graphs
• Originally for compilers
◊ Basic Blocks - a sequence of statements with only

one entrance and one exit
◊ edges between blocks represent control flow
◊ multiple edges at decision points (e.g. if)
◊ back edges for loops

• Analysis
◊ reachability

• Design Recovery
◊ Statements instead of basic blocks

ELEC 875 – Design Recovery and Automated Evolution

Data Dependency/Flow Graphs
• Again, originally for compilers and basic blocks
• For design recovery, usually each node is a statement
• edges represent a dependency on a value computed in

a previous statement
• Good for impact analysis

t1 = 1;
t2 = t1+ 3;
t3 = 4;
t5 = t1 + t3;

ELEC 875 – Design Recovery and Automated Evolution

Slicing
• Mark Weiser(1981)
• Given a set of variables v and a statement p,
◊ The set of all statements that affect the values of the

variables in v at statement p
◊ You have a hammer and you knock out any

statement that doesn't affect the values
• a subset of the statements in a program

- executable subset
• annotate the statement with the variables
◊ move backwards in the data dependency graph
annotating each node with a set of variables.

ELEC 875 – Design Recovery and Automated Evolution

Slicing
• Static slicing - static analysis, based on if it is possible

for the statement to affect the given variables.
• Dynamic slicing - those statements that affect the

variables for a given set of inputs.

• Original motivation was for debugging.

• As described, called backwards slicing
◊ starting from p, all statements affected by v is called a
forward slice.

ELEC 875 – Design Recovery and Automated Evolution

Concepts
• Concepts in comprehension research
◊ Václav Rajlich, Wayne State

(one of founders of ICPC)

• An introductory survey of various research in the area

ELEC 875 – Design Recovery and Automated Evolution

Concepts
• Fundamental block of human comprehension
◊ Important in learning
◊ attributes, lattice of concepts
◊ real world entities and classes of entities are

concepts
– cup, laptop, classroom, professor, student,
conference

◊ actions are concepts too
– travel, teaching, presenting a paper

◊ granularity
– major concepts, minor concepts

ELEC 875 – Design Recovery and Automated Evolution

Concepts and Software
• Play an import part in software
◊ Object Oriented

– not all concepts are objects
– granularity
– entities vs actions
– central concepts/distributed concepts

◊ SA&D
– central data structures are major concepts
– actions are major software components

ELEC 875 – Design Recovery and Automated Evolution

Concepts and Maintenance
• Concepts for software change over time
◊ Unexpected use of software

– consequential requirements

◊ Change in Technology
– batch to online
– privileged online to consumer online  

ELEC 875 – Design Recovery and Automated Evolution

Concepts and Maintenance
• Programmers understand domain concepts
◊ real time systems, event driven systems,

transactions, etc.
– on-the-job training?

◊ many domain concepts are user concepts
– easier to learn

◊ change requests are often in terms of domain
concepts

◊ Program comprehension is identifying where the
concepts are represented in the code.

ELEC 875 – Design Recovery and Automated Evolution

Concepts Location
• Always done
◊ informally in many cases

– similar to Lethbridge & Singer
◊ Sometimes easy and intuitive

– fall back to searching tools
– grep

◊ link between naming conventions and concepts
– date variable names involve ‘date’ or date words
– customer variable names involve ‘cust’ or
customer words

◊ doesn’t always work

ELEC 875 – Design Recovery and Automated Evolution

Concepts Location Problems
• Link between concept and names
◊ language

– mmddyy vs aammjj
◊ Names of concepts change in different environments

– IPL vs Boot
– Sysgen

◊ Concept terminology changes over time
– father/son vs. parent/child
– classes of phone numbers

ELEC 875 – Design Recovery and Automated Evolution

Concepts Location Strategies
• Dynamic
◊ execution traces

– instrumentation (profiling)
– analysis of input grammar used to identify test
cases

• Static
◊ static tracing
◊ smart code searching

ELEC 875 – Design Recovery and Automated Evolution

Case Studies
• NCSA Mosaic
◊ add audio files

– 3 parts: open file, mapping, global vars based used
by mapping routines

◊ partial comprehension - 2% of code visited
• ATAC test coverage monitor (Bellcore)
◊ showed that concepts delocalized
◊ 19 of 24 concepts had code in two or more source

files
◊ regularity of naming

ELEC 875 – Design Recovery and Automated Evolution

Domain Knowledge from Code
• Detailed design information
◊ often only documented in the code

– bank gets sued for improper foreclosure, memo
from legal “not to do this again”

◊ issue for reimplementation

• Case Study
◊ Fortran modelling system
◊ breaks solids into polygons
◊ older obsolete problems (file system optimization,

scratch files, etc).

ELEC 875 – Design Recovery and Automated Evolution

Other Work
• Change impact analysis
◊ what happens if I change this line??
◊ traceability from design documents to code and

back

• Fault Location
◊ smarter debugging

