
ELEC 875 – Design Recovery and Automated Evolution

ELEC 875
Design Recovery

and
Automated Evolution

Architecture 
Analysis



ELEC 875 – Design Recovery and Automated Evolution

Bull, R.I.; Trevors, A.; Malton, A.J.; Godfrey, M.W. 
"Semantic grep: regular expressions + relational 
abstraction" 9th Working Conference on Reverse 
Engineering(WCRE 2002), October, 2002, Richmond, 
Virginia, pp. 267- 276.

Advanced TXL

Next Week



ELEC 875 – Design Recovery and Automated Evolution

Bowman, Holt, Brewster
• Some Systems do not have documented system 

architecture
◊ Extract the system Architecture

• Problems keeping documented architecture up to date
◊ Automation?



ELEC 875 – Design Recovery and Automated Evolution

Linux
• 10 KLOC in 1991 to 1.5MLOC in 1998
◊ doubled every year

• Linux Kernel - 800 KLOC
◊ documented at individual system level
◊ no architectural documentation
◊ good guinea pig



ELEC 875 – Design Recovery and Automated Evolution

Architecture
• Conceptual architecture
◊ How developers think about the system
◊ only the meaningful links and dependencies
◊ Component responsibilities
◊ Component interactions

• Activities
◊ Capture Functionality
◊ Capture Properties
◊ Constraints



ELEC 875 – Design Recovery and Automated Evolution

Architecture
• Concrete Architecture
◊ The “real” architecture
◊ extracted by some set of tools.
◊ Contains extra links required by the implementation

• Neither architecture is documented for Linux



ELEC 875 – Design Recovery and Automated Evolution

Architecture Change
• Architecture Erosion
◊ Conceptual Violations

• Architecture Drift
◊ Concrete architecture drifts away from conceptual 

architecture



ELEC 875 – Design Recovery and Automated Evolution

Linux Conceptual Architecture
• Read Documentation
◊ No conceptual architecture documentation?
◊ Some architectural information spread in different 

documents
◊ Some overview documentation
◊ Knowledge of other Unix based architectures

- Tunis, Hector



ELEC 875 – Design Recovery and Automated Evolution

Linux Conceptual Architecture

File System

Memory
Manager

Network

Scheduler IPC

Init Library



ELEC 875 – Design Recovery and Automated Evolution

File Conceptual Architecture



ELEC 875 – Design Recovery and Automated Evolution

Linux Concrete Architecture
• Group source files based on directory structure, 

naming conventions, source code comments and 
source code examination

• Extract Relations between source files
• Lift relations between source files to relations between 

subsystems
• Convert to concrete architecture



ELEC 875 – Design Recovery and Automated Evolution

Linux Extraction
• cfx - predecessor to cppx
◊ function level extraction (Middle Model)

• grok used to turn:
- relations between functions and functions
- relations between functions and files
>>>>>
- relations between files

• Files manually assigned to subsystems
• grok used to lift relations from files to subsystems



ELEC 875 – Design Recovery and Automated Evolution

Linux Concrete Architecture

File System

Memory
Manager

Network

Scheduler IPC

Init Library



ELEC 875 – Design Recovery and Automated Evolution

File Concrete Architecture



ELEC 875 – Design Recovery and Automated Evolution

File Concrete Architecture



ELEC 875 – Design Recovery and Automated Evolution

MM Concrete Architecture



ELEC 875 – Design Recovery and Automated Evolution

Linux Concrete Architecture
• Given that concrete architecture one would think that 

the linux implementers are horrible coders
• efficiency shortcuts
• expediency
• Debugging (process scheduler depends on file system)

mislocation of printk (process -> library)
• Synchronization primitives in IPC
• differences at the subsystem level



ELEC 875 – Design Recovery and Automated Evolution

What Did We Learn?
• Human Assistance Needed in Analysis
• Concrete Architecture Different from Conceptual
◊ why
- conceptual architecture incorrect
- efficiency
- expediency
- unanticipated dependencies
- differences in control flow
- implementation language or environment constraints
- some subsystems implemented everywhere!!


