ELEC 875

Design Recovery
and
Automated Evolution

Grok and Sgrep

Today

e Semantic Grep
 Advanced TXL

ELEC 875 — Design Recovery and Automated Evolution

Relational Databases

e On Disk Data Structures
¢ optimized for huge databases
- many millions of records
¢ optimized for IT based queries
0 select avg(sales)
from employee
where commission > 0.5
0 select manager
from employee
where name = “James Higgins"”

0 allows update to single records

e Spectacular for these types of queries
ELEC 875 — Design Recovery and Automated Evolution

Program Analysis Queries

* example
¢ Common Ancestor Subsystem of Two modules
- equivalent IT query:
common boss of two employees
- requires recursive SQL (in latest version)
0 requires multiple queries to the same table
e updates to single records are rare
e often add entire derived relations to the database
e some individual queries
e Queries often need to use every record in the relation
e Relational DBs not optimized for these types of queries
¢ not surprising, very minuscule portion of database

use.
ELEC 875 — Design Recovery and Automated Evolution

Grok
¢ [nitial Version in 1995, Ric Holt
* Optimized for large Databases
¢ hundreds of thousands of facts
e Heinlein - Stranger in a Strange Land

e Relational Algebra Calculator
¢ Discrete Math

¢ Sets and Relations

¢ Ram Based
¢ Queries tend to use entire relations at a time

¢ Recursive Queries
ELEC 875 — Design Recovery and Automated Evolution

Grok - Input of Relations

e RSF - Rigi Standard Format

O triple format

funcdef main main.c
defloc main “main.c:10"”
include main.c stdio.h
calls main foo

sets foo x

parameter foo y

e Automiatic discovery of domain and range sets
0 just use names in relations
e Attributes are just another relation

ELEC 875 — Design Recovery and Automated Evolution

Grok - Input of Relations

e TA - Tuple Attribute format
¢ ER based notation
¢ Definition of instances

¢ Attributes instead of relations
funcdef main main.c
defloc main “main.c:10”

SINSTANCE main func {defloc=“main.c:10"}

¢ Relations can also be extended

¢ translated to RSF internally

ELEC 875 — Design Recovery and Automated Evolution

Grok - Input of Relations
e TA -Schema Definition

¢ Allows the user to specify the schema of the
data

¢ Not explicitly checked

Schema is also compiled into relations

¢ Can write a grok program that checks the data

<>

against the schema
- already done

ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

e Sets
¢ construction
functions — { llmaj_n”, IIfOOII, Ilbar,,, llbatll }

£ VA VS / A s) 4 }
4

vars ={“m”, “x
refs = {“x”, “z"}
¢ union/intersection/complement
ents = functions + vars
vrefs = vars ” refs
vnrefs = vars - refs
¢ cardinality
numvars = #vars
0 sets can be read and written to files, one entity per

line
ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

* Relations

¢ Cross Product
foo = functions X refs

0 Relations are sets of tuples, so all set operators
work on relations in the obvious way

¢ domain/range(codomain)
f = dom foo
r = rng refs

O relation composition

h=fog == {(xy) | y=gXx))}

ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

e Relations
¢ Id constructor (S is a set)
r =id S === {(x,x)} for all xin S
¢ inverse (n is a relation)
m = 1nv n
¢ transitive closure
R+
¢ Transitive, reflexiv closure
R*

ELEC 875 — Design Recovery and Automated Evolution

Grok - Operators

* Sets and Relations
O projection (s is set, R is relation)
s.R ={y | xin S and (x,y) in R)}
Rs=s.mnvR

{“t”,”¢”} . invokes == all functions invoked by f
and g

{“t”,”g"”} . invokes+ = all functions invoked
directly or indirectly by f and g

{“t”,”g”} . invokes™ = all functions invoked

directly or indirectly by f and g including f and
g.

ELEC 875 — Design Recovery and Automated Evolution

Grok - Scripting

e Grok also has a scripting language:
¢ conditionals (if)
0 looping
¢ arguments
0 file io

e Other numerous options including options to ask
for names of sets, relations and variables, string
operations, id operations, file I/ O

ELEC 875 — Design Recovery and Automated Evolution

Grep

e problems with grep
¢ no syntax awareness
0 grep “date” *.c gets:
— all variables with date the name
— all functions with date in the name

— all comments with date in them
¢ scans code line by line. Fast for small file, slow
for big systems (limited by I/O speed).
e advantages of grep
¢ simple Regular Expression notation, easy for
developers to understand

ELEC 875 — Design Recovery and Automated Evolution

SEIep

 lets grep run on TA database
¢ run fact extractor to get TA from code
¢ contains an arbitrary model
— they use the software landscape model
— could be a Datrix or DMM model too.
e regular expressions can be limited to particular
entities
¢ variables containing “date” in the name
e regular expressions can be applied to results of
queries.
¢ all methods from class A that are overridden by
class B and contain the “f.*bar” in the return type.

ELEC 875 — Design Recovery and Automated Evolution

SEIep

e combination allows us to mix structural (grok
queries) and lexical patterns.

— key relation is the contains relation which is given
by the 'in' query verb.

—need a mapping from the equivalent of contains in
the extracted model.

— similar to the Holt, Fahmy and Cordy paper.

e Contrast back to Lethbridge and Singer

ELEC 875 — Design Recovery and Automated Evolution

SEIep

* Implementation:
- Front end for a grok server
- translates to grok and executes
- applies pattern matching to result

e Grok is a complex language, sgrep attempts to
simplify

® assumes some relation names (contains)

ELEC 875 — Design Recovery and Automated Evolution

SEIep

e (ueries:
- pattern is entity --- result is a set
pattern is run against projection of $INSTANCE

SINSTANCE x entity
get™ is function right projection
getChar is * left projection

Start by right projection:
$INSTANCE.{'tfunction'}
then do a regular expression match on result
- simplest query to implement
- Can also returns attributes

ELEC 875 — Design Recovery and Automated Evolution

SEIep

e (ueries:
- pattern is entity in pattern --- result is a set
First part is the same as before, but constrained by
the contains+ relation
get™ is function in parser.c

not clear if
get™ is function in pars™.c
is supported

- clear extension if not.

ELEC 875 — Design Recovery and Automated Evolution

SEIep

e QQueries:
- pattern is entity <relation> pattern is entity
--- result is a relation
find sets for the left and right is and then find
those tuples in relation that match..
*is function <calls> getc is *

Two sets (based on first query)
Match against relation

ELEC 875 — Design Recovery and Automated Evolution

SEIep

e QQueries:
- pattern is entity in pattern <relation> pattern is
entity 1n pattern
-- result is relation
Find sets for left and right and relation
*1s function in parser.c <calls> " is function in
scanner.c

ELEC 875 — Design Recovery and Automated Evolution

SEIep

e (Queries:
- pattern is entity <relation+> pattern is entity
--- result is a relation
find sets for the left and right is and then find
those tuples in transitive closure of relation that
match..
*1s function <calls+> getc is *

ELEC 875 — Design Recovery and Automated Evolution

SEIep

e Does not handle composite relation queries
— what variables are modified when I call this
function?
- composes calls+ and sets

ELEC 875 — Design Recovery and Automated Evolution

Relational Algebra Practice..

Class < isSubclassOf Class
transact transfer
contains / ¢contains isSubclassOf contains’/ ¢contains
Field Field Field Field
Class
kind t date , from to
deposit ;
isOfType ¢ *lsOnype contains ¢ isOfType
—pp{ Tvpoe Class
E— Field
—p| int date
| to \ isOfType
contains contains isOfType
Field |[Field Type
isOfType | year day acct
|
isOfType
isDefinedIinTermsOf

the types of all fields of subclasses of the class ‘transact’

ELEC 875 — Design Recovery and Automated Evolution

Advanced TXL

e Based on Talks from TXL website (in particular
Andrew Malton's talk)
e Grammars, Fact Extraction, Transformation

ELEC 875 — Design Recovery and Automated Evolution

TXL Uses

* Original Purpose: Language Prototyping
— C++ was originally implemented as a pre processor
for C (but not in TXL).
e Annotation (i.e. add XML markup to Code)
* Fact Extraction
e Analysis (find 32 bit dependencies)
e Dialect Conversion
e.g. transform deprecated functions in Java
o Software Transtformation
e.g. convert constant shifts to bit field (Brian Le Breton)
e Software Migration (language translation)

ELEC 875 — Design Recovery and Automated Evolution

TXL Terminology

* Parsing Terminology
— token, nonterminal, parse tree
o TXL terms
— pattern (a source code fragment that is matched in a
tree)
— variable (a variable is bound to a tree or subtree. Once
bound it cannot be changed except global variables)
— type (a terminal or non-terminal name that designates
the type a variable can match)

ELEC 875 — Design Recovery and Automated Evolution

Tokens

* Terminal symbols

e Identified as token classes which have a value
id] identifier: a Z xyzzy

upperid] user case identifier: Z XYZZY
number] number: (>=0)3 3.4

charlit] character literal: 'abcdefg’

stringlit] string literal: "abcdefghij"

key] any keyword defined in keys section
token] any terminal that is not a keyword.

ELEC 875 — Design Recovery and Automated Evolution

Nonterminals

e created by define or modified by redefine statements

e parse rules for grammar

define postfix_cexpression

[cprimary][repeat postfix_extension]
end define
define cprimary

[reference_id] | [constant] | [string]| '([cexpression_list] ')
end define
define postfix_extension
'[[assignment_cexpression] ']

| '([list argument_cexpression] ')

" d] I > [d] |+ -
end define

ELEC 875 — Design Recovery and Automated Evolution

Variables

e Jdentifier that is bound to a value of a nonterminal or
terminal type

replace [postfix_cexpression]
Function [id] (Parms [list argument_cexpression])

construct X [cexpression]
3+'y

ELEC 875 — Design Recovery and Automated Evolution

Patterns

e A sequence of tokens and variable that match a type

replace [postfix_cexpression]
Function [id] (Parms [list argument_cexpression])

e Patterns bind variables to values.

ELEC 875 — Design Recovery and Automated Evolution

Naming Conventions

e Like most languages, TXL does not enforce any
particular naming convention.

variables: LeadingUpperCamelCase
type: [loading_lower_underscores]

rules: [leadingLowerCamelCase]

ELEC 875 — Design Recovery and Automated Evolution

Subgrammars

e The base grammars from the TXL website are generic
and generally match the published grammar. Often a
task will be easier with a slightly different grammar.

include "C.grm"
include "TypedetOverrides.Grammar"

e Small local overrides grammar can be done inline in the
program

ELEC 875 — Design Recovery and Automated Evolution

Overrides

e The base grammars from the TXL website are generic
and generally match the published grammar. Often a
task will be easier with a slightly different grammar.

include "C.grm"
include "TypedetOverrides.Grammar"

ELEC 875 — Design Recovery and Automated Evolution

Overrides

e Small local overrides grammar can be done inline in the

program
redefine postfix_cexpression
[function_call] | ...

end define

define function_call
[function_name] '([repeat cexpression] ')

end define

define function_name
[file_op] | [reference_id]

end define

define file_op
'fopen | 'fclose

end define

ELEC 875 — Design Recovery and Automated Evolution

Overrides

e Small local overrides grammar can be done inline in the
program

rule report_fopen

replace $ [function_call]

FileFunction [file_op] '(Parms [list argument_cexpression] ')
construct Msg [stringlit]

_ [+ "found call to file operation"]

[print]

by

Fn '(Parms ')

end rule

ELEC 875 — Design Recovery and Automated Evolution

