
ELEC 875 – Design Recovery and Automated Evolution

ELEC 875
Design Recovery

and
Automated Evolution

Grok and Sgrep

ELEC 875 – Design Recovery and Automated Evolution

Today
• Semantic Grep
• Advanced TXL

ELEC 875 – Design Recovery and Automated Evolution

Relational Databases
• On Disk Data Structures
◊ optimized for huge databases

- many millions of records
◊ optimized for IT based queries
◊ select avg(sales)

from employee
where commission > 0.5

◊ select manager
from employee
where name = “James Higgins”

◊ allows update to single records
• Spectacular for these types of queries

ELEC 875 – Design Recovery and Automated Evolution

Program Analysis Queries
• example
◊ Common Ancestor Subsystem of Two modules

- equivalent IT query:
common boss of two employees

 - requires recursive SQL (in latest version)
◊ requires multiple queries to the same table

• updates to single records are rare
• often add entire derived relations to the database
• some individual queries
• Queries often need to use every record in the relation
• Relational DBs not optimized for these types of queries
◊ not surprising, very minuscule portion of database

use.

ELEC 875 – Design Recovery and Automated Evolution

Grok
• Initial Version in 1995, Ric Holt
• Optimized for large Databases
◊ hundreds of thousands of facts

• Heinlein - Stranger in a Strange Land

• Relational Algebra Calculator
◊ Discrete Math
◊ Sets and Relations

• Ram Based
◊ Queries tend to use entire relations at a time
◊ Recursive Queries

ELEC 875 – Design Recovery and Automated Evolution

Grok - Input of Relations
• RSF - Rigi Standard Format
◊ triple format
funcdef main main.c
defloc main “main.c:10”
include main.c stdio.h
calls main foo
sets foo x
parameter foo y

• Automiatic discovery of domain and range sets
◊ just use names in relations

• Attributes are just another relation

ELEC 875 – Design Recovery and Automated Evolution

Grok - Input of Relations
• TA - Tuple Attribute format
◊ ER based notation
◊ Definition of instances
◊ Attributes instead of relations
funcdef main main.c
defloc main “main.c:10”

$INSTANCE main func {defloc=“main.c:10”}

◊ Relations can also be extended

◊ translated to RSF internally

ELEC 875 – Design Recovery and Automated Evolution

Grok - Input of Relations
• TA -Schema Definition
◊ Allows the user to specify the schema of the

data
◊ Not explicitly checked
◊ Schema is also compiled into relations
◊ Can write a grok program that checks the data

against the schema
- already done

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Sets
◊ construction

functions = { “main”, “foo”, “bar”, “bat” }
vars = { “m”, “x”, “y” }
refs = {“x”, “z”}

◊ union/intersection/complement
ents = functions + vars
vrefs = vars ^ refs
vnrefs = vars - refs

◊ cardinality
numvars = #vars

◊ sets can be read and written to files, one entity per
line

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Relations
◊ Cross Product

foo = functions X refs
◊ Relations are sets of tuples, so all set operators

work on relations in the obvious way
◊ domain/range(codomain)

f = dom foo
r = rng refs

◊ relation composition
h = f o g == { (x,y) | y = g(f(x))}

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Relations
◊ Id constructor (S is a set)

r = id S === {(x,x)} for all x in S
◊ inverse (n is a relation)

m = inv n
◊ transitive closure

R+
◊ Transitive, reflexiv closure

R*

ELEC 875 – Design Recovery and Automated Evolution

Grok - Operators
• Sets and Relations
◊ projection (s is set, R is relation)

s.R = { y | x in S and (x,y) in R)}
 R.s = s . inv R

{“f”,”g”} . invokes == all functions invoked by f
and g

{“f”,”g”} . invokes+ = all functions invoked
directly or indirectly by f and g

{“f”,”g”} . invokes* = all functions invoked
directly or indirectly by f and g including f and
g.

ELEC 875 – Design Recovery and Automated Evolution

Grok - Scripting
• Grok also has a scripting language:
◊ conditionals (if)
◊ looping
◊ arguments
◊ file io

• Other numerous options including options to ask
for names of sets, relations and variables, string
operations, id operations, file I/O

ELEC 875 – Design Recovery and Automated Evolution

Grep
• problems with grep
◊ no syntax awareness
◊ grep “date” *.c gets:

– all variables with date the name
– all functions with date in the name
– all comments with date in them

◊ scans code line by line. Fast for small file, slow
for big systems (limited by I/O speed).

• advantages of grep
◊ simple Regular Expression notation, easy for

developers to understand

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• lets grep run on TA database
◊ run fact extractor to get TA from code
◊ contains an arbitrary model

– they use the software landscape model
– could be a Datrix or DMM model too.

• regular expressions can be limited to particular
entities
◊ variables containing “date” in the name

• regular expressions can be applied to results of
queries.
◊ all methods from class A that are overridden by

class B and contain the “f.*bar” in the return type.

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• combination allows us to mix structural (grok

queries) and lexical patterns.
– key relation is the contains relation which is given

by the 'in' query verb.
– need a mapping from the equivalent of contains in

the extracted model.
– similar to the Holt, Fahmy and Cordy paper.
• Contrast back to Lethbridge and Singer

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Implementation:

- Front end for a grok server
- translates to grok and executes
- applies pattern matching to result

• Grok is a complex language, sgrep attempts to
simplify

• assumes some relation names (contains)

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Queries:

- pattern is entity --- result is a set
pattern is run against projection of $INSTANCE

$INSTANCE x entity
 get* is function right projection

getChar is * left projection
 Start by right projection:
 $INSTANCE.{'function'}
 then do a regular expression match on result

- simplest query to implement
- Can also returns attributes

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Queries:

- pattern is entity in pattern --- result is a set
 First part is the same as before, but constrained by

the contains+ relation
get* is function in parser.c

 not clear if
get* is function in pars*.c

 is supported
- clear extension if not.

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Queries:

- pattern is entity <relation> pattern is entity
--- result is a relation

 find sets for the left and right is and then find
those tuples in relation that match..

 * is function <calls> getc is *

 Two sets (based on first query)
 Match against relation

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Queries:
- pattern is entity in pattern <relation> pattern is

entity in pattern
-- result is relation

Find sets for left and right and relation
* is function in parser.c <calls> * is function in
scanner.c

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Queries:

- pattern is entity <relation+> pattern is entity
--- result is a relation

 find sets for the left and right is and then find
those tuples in transitive closure of relation that
match..

 * is function <calls+> getc is *

ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Does not handle composite relation queries

- what variables are modified when I call this
function?

- composes calls+ and sets

ELEC 875 – Design Recovery and Automated Evolution

Relational Algebra Practice..
isSubclassOf

kind

Field

t_date

Field

int

Type

isOfType isOfType

date

Class

transact

Class

contains contains

year

Field

day

Field

contains contains

isOfType

isOfType

transfer

Class

from

Field

to

Field

contains contains

deposit

Class

to

Field

contains

isSubclassOf

acct

Type
isOfType

isOfType

isOfType

isDefinedInTermsOf

the types of all fields of subclasses of the class ‘transact’

ELEC 875 – Design Recovery and Automated Evolution

Advanced TXL
• Based on Talks from TXL website (in particular

Andrew Malton's talk)
• Grammars, Fact Extraction, Transformation

ELEC 875 – Design Recovery and Automated Evolution

TXL Uses
• Original Purpose: Language Prototyping

– C++ was originally implemented as a pre processor
for C (but not in TXL).

• Annotation (i.e. add XML markup to Code)
• Fact Extraction
• Analysis (find 32 bit dependencies)
• Dialect Conversion

e.g. transform deprecated functions in Java
• Software Transformation

e.g. convert constant shifts to bit field (Brian Le Breton)
• Software Migration (language translation)

ELEC 875 – Design Recovery and Automated Evolution

TXL Terminology
• Parsing Terminology

– token, nonterminal, parse tree
• TXL terms

– pattern (a source code fragment that is matched in a
tree)

– variable (a variable is bound to a tree or subtree. Once
bound it cannot be changed except global variables)

– type (a terminal or non-terminal name that designates
the type a variable can match)

ELEC 875 – Design Recovery and Automated Evolution

Tokens
• Terminal symbols
• Identified as token classes which have a value

[id] identifier: a Z xyzzy
[upperid] user case identifier: Z XYZZY
[number] number: (>= 0) 3 3.4
[charlit] character literal: 'abcdefg'
[stringlit] string literal: "abcdefghij"
[key] any keyword defined in keys section
[token] any terminal that is not a keyword.

ELEC 875 – Design Recovery and Automated Evolution

Nonterminals
• created by define or modified by redefine statements
• parse rules for grammar

define postfix_cexpression
 [cprimary][repeat postfix_extension]
end define
define cprimary
 [reference_id] | [constant] | [string]| '([cexpression_list] ')

end define
define postfix_extension
 '[[assignment_cexpression] ']
 | '([list argument_cexpression] ')
 | '. [id] | '-> [id] | '++ | '--
end define

ELEC 875 – Design Recovery and Automated Evolution

Variables
• Identifier that is bound to a value of a nonterminal or

terminal type

replace [postfix_cexpression]
Function [id] (Parms [list argument_cexpression])

construct X [cexpression]
3 + 'y

ELEC 875 – Design Recovery and Automated Evolution

Patterns
• A sequence of tokens and variable that match a type

replace [postfix_cexpression]
Function [id] (Parms [list argument_cexpression])

• Patterns bind variables to values.

ELEC 875 – Design Recovery and Automated Evolution

Naming Conventions
• Like most languages, TXL does not enforce any

particular naming convention.

variables: LeadingUpperCamelCase

type: [loading_lower_underscores]

rules: [leadingLowerCamelCase]

ELEC 875 – Design Recovery and Automated Evolution

Subgrammars
• The base grammars from the TXL website are generic

and generally match the published grammar. Often a
task will be easier with a slightly different grammar.

include "C.grm"
include "TypedefOverrides.Grammar"

• Small local overrides grammar can be done inline in the
program

ELEC 875 – Design Recovery and Automated Evolution

Overrides
• The base grammars from the TXL website are generic

and generally match the published grammar. Often a
task will be easier with a slightly different grammar.

include "C.grm"
include "TypedefOverrides.Grammar"

ELEC 875 – Design Recovery and Automated Evolution

Overrides
• Small local overrides grammar can be done inline in the

program
redefine postfix_cexpression
 [function_call]| ...
end define
define function_call

[function_name] '([repeat cexpression] ')
end define
define function_name
 [file_op] | [reference_id]
end define
define file_op
 'fopen | 'fclose
end define

ELEC 875 – Design Recovery and Automated Evolution

Overrides
• Small local overrides grammar can be done inline in the

program

rule report_fopen
 replace $ [function_call]

FileFunction [file_op] '(Parms [list argument_cexpression] ')
construct Msg [stringlit]

_ [+ "found call to file operation"]
 [print]

by
Fn '(Parms ')

end rule

