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Relational Databases
• On Disk Data Structures
◊ optimized for huge databases

- many millions of records
◊ optimized for IT based queries
◊ select avg(sales)

from employee
where commission > 0.5

◊ select manager
from employee
where name = “James Higgins”

◊ allows update to single records
• Spectacular for these types of queries
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Program Analysis Queries
• example
◊ Common Ancestor Subsystem of Two modules

- equivalent IT query:
common boss of two employees

 - requires recursive SQL (in latest version)
◊ requires multiple queries to the same table

• updates to single records are rare
• often add entire derived relations to the database
• some individual queries
• Queries often need to use every record in the relation
• Relational DBs not optimized for these types of queries
◊ not surprising,  very minuscule portion of database 

use.
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Grok
• Initial Version in 1995, Ric Holt
• Optimized for large Databases
◊ hundreds of thousands of facts

• Heinlein - Stranger in a Strange Land

• Relational Algebra Calculator
◊ Discrete Math
◊ Sets and Relations

• Ram Based
◊ Queries tend to use entire relations at a time
◊ Recursive Queries
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Grok - Input of Relations
• RSF - Rigi Standard Format
◊ triple format
funcdef main main.c
defloc main “main.c:10”
include main.c stdio.h
calls main foo
sets foo x
parameter foo y

• Automiatic discovery of domain and range sets
◊ just use names in relations

• Attributes are just another relation
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Grok - Input of Relations
• TA - Tuple Attribute format
◊ ER based notation
◊ Definition of instances
◊ Attributes instead of relations 
funcdef main main.c
defloc main “main.c:10”

$INSTANCE main func {defloc=“main.c:10”}

◊ Relations can also be extended

◊ translated to RSF internally
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Grok - Input of Relations
• TA -Schema Definition
◊ Allows the user to specify the schema of the 

data
◊ Not explicitly checked
◊ Schema is also compiled into relations
◊ Can write a grok program that checks the data 

against the schema 
- already done
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Grok - Operators 
• Sets
◊ construction

functions = { “main”, “foo”, “bar”, “bat” }
vars  = { “m”, “x”, “y” }
refs = {“x”, “z”}

◊ union/intersection/complement
ents = functions + vars
vrefs = vars ^ refs
vnrefs = vars - refs

◊  cardinality
numvars = #vars

◊ sets can be read and written to files, one entity per 
line
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Grok - Operators 
• Relations
◊ Cross Product

foo = functions X refs
◊  Relations are sets of tuples, so all set operators 

work on relations in the obvious way
◊ domain/range(codomain)

f = dom foo
r = rng refs

◊ relation composition
h = f o g  ==  { (x,y) | y = g(f(x))}
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Grok - Operators 
• Relations
◊ Id constructor (S is a set)

r  = id S  === {(x,x)} for all x in S
◊ inverse  (n is a relation)

m = inv n
◊ transitive closure

R+
◊ Transitive, reflexiv closure

R*
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Grok - Operators 
• Sets and Relations
◊ projection (s is set, R is relation)

s.R  = { y | x in S and (x,y) in R)}
    R.s = s . inv R

{“f”,”g”} . invokes  == all functions invoked by f 
and g

{“f”,”g”} . invokes+ = all functions invoked 
directly or indirectly by f and g 

{“f”,”g”} . invokes* = all functions invoked 
directly or indirectly by f and g including f and 
g.
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Grok - Scripting 
• Grok also has a scripting language:
◊ conditionals (if)
◊ looping
◊ arguments
◊ file io

• Other numerous options including options to ask 
for names of sets, relations and variables, string 
operations, id operations, file I/O
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Grep
• problems with grep
◊ no syntax awareness
◊ grep “date” *.c gets:

– all variables with date the name
– all functions with date in the name
– all comments with date in them

◊ scans code line by line. Fast for small file, slow 
for big systems (limited by I/O speed).

• advantages of grep
◊ simple Regular Expression notation, easy for 

developers to understand
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sgrep
• lets grep run on TA database
◊ run fact extractor to get TA from code
◊ contains an arbitrary model

– they use the software landscape model
– could be a Datrix or DMM model too.

• regular expressions can be limited to particular 
entities
◊ variables containing “date” in the name

• regular expressions can be applied to results of 
queries.
◊ all methods from class A that are overridden by 

class B and contain the “f.*bar” in the return type.
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sgrep
• combination allows us to mix structural (grok 

queries) and lexical patterns.
– key relation is the contains relation which is given 

by the 'in' query verb. 
– need a mapping from the equivalent of contains in 

the extracted model.
– similar to the Holt, Fahmy and Cordy paper.
• Contrast back to Lethbridge and Singer
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sgrep
• Implementation:

- Front end for a grok server
- translates to grok and executes
- applies pattern matching to result

• Grok is a complex language, sgrep attempts to 
simplify

• assumes some relation names (contains)
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sgrep
• Queries:

- pattern is entity --- result is a set
pattern is run against projection of $INSTANCE

$INSTANCE x entity 
 get* is function  right projection

getChar is *  left projection
     Start by right projection:
      $INSTANCE.{'function'}
     then do a regular expression match on result

- simplest query to implement
- Can also returns attributes
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sgrep
• Queries:

- pattern is entity in pattern --- result is a set
 First part is the same as before, but constrained by 

the contains+ relation
get* is function in parser.c

   not clear if
get* is function in pars*.c

   is supported
- clear extension if not.



ELEC 875 – Design Recovery and Automated Evolution

sgrep
• Queries:

- pattern is entity <relation> pattern is entity
--- result is a relation

     find sets for the left and right is and then find 
those tuples in relation that match..

       * is function <calls> getc is *

       Two sets (based on first query)
       Match against relation
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sgrep
• Queries:
- pattern is entity in pattern <relation> pattern is 

entity in pattern
-- result is relation

Find sets for left and right and relation
* is function in parser.c <calls> * is function in 
scanner.c
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sgrep
• Queries:

- pattern is entity <relation+> pattern is entity
--- result is a relation

     find sets for the left and right is and then find 
those tuples in transitive closure of relation that 
match..

       * is function <calls+> getc is *
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sgrep
• Does not handle composite relation queries

- what variables are modified when I call this 
function?

- composes calls+ and sets
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Relational Algebra Practice..
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Field
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Class
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year
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Class
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the types of all fields of subclasses of the class ‘transact’
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Advanced TXL
• Based on Talks from TXL website (in particular 

Andrew Malton's talk)
• Grammars, Fact Extraction, Transformation
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TXL Uses
• Original Purpose: Language Prototyping

– C++ was originally implemented as a pre processor 
for C (but not in TXL).

• Annotation (i.e. add XML markup to Code)
• Fact Extraction
• Analysis (find 32 bit dependencies)
• Dialect Conversion

e.g. transform deprecated functions in Java
• Software Transformation

e.g. convert constant shifts to bit field (Brian Le Breton)
• Software Migration (language translation)
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TXL Terminology
• Parsing Terminology

– token, nonterminal, parse tree
• TXL terms

– pattern (a source code fragment that is matched in a 
tree)

– variable (a variable is bound to a tree or subtree. Once 
bound it cannot be changed except global variables)

– type (a terminal or non-terminal name that designates 
the type a variable can match)
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Tokens
• Terminal symbols
• Identified as token classes which have a value

[id] identifier: a Z xyzzy
[upperid] user case identifier: Z XYZZY
[number] number: (>= 0) 3 3.4 
[charlit] character literal: 'abcdefg'
[stringlit] string literal: "abcdefghij"
[key] any keyword defined in keys section
[token] any terminal that is not a keyword.
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Nonterminals
• created by define or modified by redefine statements
• parse rules for grammar

define postfix_cexpression
       [cprimary][repeat postfix_extension]
end define
define cprimary
    [reference_id] | [constant] | [string]|  '( [cexpression_list] ')

end define
define postfix_extension
    '[ [assignment_cexpression] ']
       |  '([list argument_cexpression] ')
       |   '. [id] |   '-> [id]  |   '++ |   '--
end define
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Variables
• Identifier that is bound to a value of a nonterminal or 

terminal type

replace [postfix_cexpression]
Function [id] ( Parms [list argument_cexpression] ) 

construct X [cexpression]
3 + 'y
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Patterns
• A sequence of tokens and variable that match a type

replace [postfix_cexpression]
Function [id] ( Parms [list argument_cexpression] ) 

• Patterns bind variables to values.
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Naming Conventions
• Like most languages, TXL does not enforce any 

particular naming convention.

variables: LeadingUpperCamelCase

type: [loading_lower_underscores]

rules: [leadingLowerCamelCase]
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Subgrammars
• The base grammars from the TXL website are generic 

and generally match the published grammar. Often a 
task will be easier with a slightly different grammar.

include "C.grm"
include "TypedefOverrides.Grammar"

• Small local overrides grammar can be done inline in the 
program
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Overrides
• The base grammars from the TXL website are generic 

and generally match the published grammar. Often a 
task will be easier with a slightly different grammar.

include "C.grm"
include "TypedefOverrides.Grammar"
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Overrides
• Small local overrides grammar can be done inline in the 

program
redefine postfix_cexpression
       [function_call]| ...
end define
define function_call

[function_name] '( [repeat cexpression] ')
end define
define function_name
    [file_op] | [reference_id]
end define
define file_op
    'fopen | 'fclose
end define
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Overrides
• Small local overrides grammar can be done inline in the 

program

rule report_fopen
   replace $ [function_call]

FileFunction [file_op] '(  Parms [list argument_cexpression] ')
construct Msg [stringlit]

_ [+ "found call to file operation"]
   [print]

by
Fn '( Parms ')

end rule


