
ELEC 875 – Design Recovery and Automated Evolution

ELEC 875
Design Recovery

and
Automated Evolution

Transformation
Paradigms

Week 6 Class 1

ELEC 875 – Design Recovery and Automated Evolution

Today
• Combining Input and Output Grammars

– Union Grammars
– Consume/Edit Grammars

• Transformation Strategien
– Union Transformations
– Consume/Edit Transformations

• Annotation Strategy
• Ad Hoc Polymorphic transformation

ELEC 875 – Design Recovery and Automated Evolution

About TXL
• Start at
◊ http://www.txl.ca/txl-learn.html

- Simple Intro + Examples
◊ http://www.txl.ca/txl-docs.html

– Read the TXL Programming Language
◊ back to http://www.txl.ca/txl-learn.html

– Do the TXL challenge

ELEC 875 – Design Recovery and Automated Evolution

About TXL
• Some Quirks from Monday
◊ TXL mixes both the TXL language and the language

being transformed.
◊ Sometimes the same keyword or symbol is used in

both.
– e.g. square brackets are types and rules in TXL and

arrays in C, some language uses the keyword end
– use a single quote to indicate that something is to

be used as a data element.
'[Expr [cexpression] ']

– since charlits have single quotes, they have to be
quoted: ''foo'

ELEC 875 – Design Recovery and Automated Evolution

Combining Input and Output Grammars

• Problem:
◊ Our input and output grammars might not be the same!

– e.g. translate Java to Python
– both input and output must be parsed by the same

grammar.

• Two General Solutions:
◊ Union Grammars - combine the grammars into a single

grammar at many levels
◊ Consume/Emit Grammar - combine them only at the

top level

ELEC 875 – Design Recovery and Automated Evolution

Union Grammars
• Combine the grammars at several levels
◊ Useful when the two grammars are similar or

have similar concepts. For example, C and
Pascal. Both are block/statement/expression
based languages.

◊ Combine at each level where they match.
◊ In our example, we would combine the

grammars at the global declaration level, the
procedure level, the statement level and the
expression level.

◊ Assume that syntax of input is correct. Grammar
will allow mixed programs as input.  

ELEC 875 – Design Recovery and Automated Evolution

C Grammar
define program
 [repeat decl]
end define

define decl
 [var_decl]
 |[proc_decl]
end define
define proc_decl
 [opt type] [id] [header]
 [block]
end define
define block
 ‘{
 [repeat var_decl]
 [repeat statement]
 ‘}

define statement
 ...
 | [if_statement]
 ...
 | [block]
end define
define if_statement
 ‘if [expression]
 [statement]
 ‘else [statement]
end define

ELEC 875 – Design Recovery and Automated Evolution

Pascal Grammar
define program
 ‘program [id] [file_header]
 [repeat decl]
 [block] ‘.
end define
define decl
 [var_decl]
 |[proc_decl]
end define
define proc_decl
 [procedure_or_function]
 [id] [header]
 [repeat decl]
 [block]
end define

define block
 ‘begin
 [repeat statement]
 ‘end
end define
define statement
 ...
 | [if_statement]
 ...
 | [block]
end define
define if_statement
 ‘if [expression]
 ‘then [statement]
 ‘else [statement]
end define

ELEC 875 – Design Recovery and Automated Evolution

Union Grammar - Technique 1
define program
 [pascal_program]
 | [c_program]
end define
define pascal_program
 ‘program [id] [file_header]
 [repeat decl]
 [block] ‘.
end define
define c_program
 [repeat decl]
end define

ELEC 875 – Design Recovery and Automated Evolution

Union Grammar - Technique 1
function main
 replace [program]
 ‘program _ [id] _ [file_header]
 Decls [repeat decl]
 MainBlock [block] ‘.
 construct MainProc
 int main (int argc, char * argv[])
 MainBlock [replaceBlock]
 [addReturn0]
 by
 Decls [replaceDecls]
 [. MainProc]
end function

ELEC 875 – Design Recovery and Automated Evolution

Union Grammar - Technique 2
define block
 [begin_or_brace]
 [repeat decl]
 [repeat statement]
 [end_or_brace]
end define

define begin_or_brace
 ‘begin | ‘{
end define

define end_or_brace
 ‘end | ‘}
end define

define if_statement
 ‘if [expression]
 [opt ‘then]
 [statement]
 ‘else [statement]
end define

ELEC 875 – Design Recovery and Automated Evolution

Union Grammar - Technique 2

rule replace_block
 replace [block]
 ‘begin
 Stmts [repeat statement]
‘end by

 ‘{
 Stmts [replaceStatements]
‘} end rule

ELEC 875 – Design Recovery and Automated Evolution

Union Grammars - Final Words

• Combine the grammars at several levels  
◊ Two general techniques - can be combined  
◊ Combine at each level where they match.

• Have to be careful of introducing ambiguities
◊ Grammars may interact in unforeseen ways

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Grammars

• Combine the grammars only at the top level (or maybe
not at all!!)
◊ Useful when the two grammars very different.
◊ Source grammar is separated from output grammar

• Several techniques:
◊ Parallel decomposition/Construction
◊ Global Variable Accumulation
◊ Attribute/Extraction

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Parallel Execution

• Pass the input in as a parameter to the first rule
◊ Rules construct output in the scope

• Example:  
◊ Convert Alphabet to Morse Code

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Parallel Execution
define program
 [repeat id]
 |[repeat stringlit]
end define

function main
 replace [program]
 Input [repeat id]
 construct EmptyResult [repeat stringlit]
 _
 by
 EmptyResult [asciiToMorse Input]
end function

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Parallel Execution
define AsciiMorse
 [id] [stringlit]
end define
function asciiToMorse Input [repeat id]
 construct Table [repeat AsciiMorse]
 A “.-” B “-...” C “-.-.” ...
 deconstruct Input
 NextChar [id] RestInput [repeat id]
 deconstruct * [AsciiMorse] Table
 NextChar ResultMorse [stringlit]
 replace [repeat stringlit]
 FinalResult
 by
 FinalResult [. ResultMorse]

 [asaciiToMorse RestInput]
end function

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Parallel Execution
define program
 [repeat id] | [repeat stringlit]
end define
define AsciiMorse
 [id] [stringlit]
end define
function main
 replace [program]
 Input [repeat id]
 construct Table [repeat AsciiMorse]

 A “.-” B “-...” C “-.-.” ...
 construct EmptyResult [repeat stringlit]
 _
 by
 EmptyResult [asciiToMorse Table each Input]
end function

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Parallel Execution
function asciiToMorse Table[repeat ASciiMorse] Input[id]

 deconstruct * [AsciiMorse] Table
 Input ResultMorse [stringlit]

 replace [repeat stringlit]
 FinalResult

 by
 FinalResult [. ResultMorse]

end function

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Global Variables

• Parallel execution constructs output in scope
◊ Input only exists in parameters or variables
◊ Sometimes complex patterns on input means it must

remain the scope
• Build the result up in a global variable
◊ Replace input with output at the last moment

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Global Vars
define program
 [repeat id]|[repeat stringlit]
end define
function main
 export Morse [repeat stringlit]

_
 replace [program]
 Input [program]
 by
 Input [BuildResult]

 [replaceByResult]
end function

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Global Vars
define AsciiMorse
 [id] [stringlit]
end define
rule buildResult
 construct Table [repeat AsciiMorse]
 A “.-” B “-...” C “-.-.” ...
 replace $ [repeat id]
 TheChar [id] Rest [repeat id]
 deconstruct * [AsciiMorse] Table
 TheChar TheMorse [stringlit]
 import Morse [repeat stringlit]
 export Morse
 Morse [. TheMorse]
 by
 TheChar Rest
end rule

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Global Vars

rule replaceByResult
 replace [program]
 _ [program]
 import Morse [repeat stringlit]
 by
 Morse
end rule

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Attribute Extraction

• Provide pockets in the input grammar to hold results
◊ Put results in the pockets
◊ Extract the results

• Pockets may introduce parsing ambiguities

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Attribute Extraction
define program
 [c_program] | [repeat facts]
end define
define fact
 ‘$ [id] ‘([list fact_arg] ‘) ‘$
end define
redefine assignment
 [lvalue] ‘= [expression] [opt fact]
end redefine
function main
 replace [program]
 P [program]
 by
 P [annotate]
 [replaceByResult]
end function

ELEC 875 – Design Recovery and Automated Evolution

Consume/Emit Attribute Extraction
rule annotateAssignment
 replace $ [assignment]
 Lval [lvalue] ‘= E [expression]
 by
 LVal ‘= E ‘$ assign(LVal,E) ‘$
end rule

function replaceByResult
 replace [program]

P [program]
 construct Facts [repeat fact]
 _ [^ P]
 by
 Facts
end function

ELEC 875 – Design Recovery and Automated Evolution

Annotation Strategy

• Task: highlight elements of interest
◊ Like pockets, but do not do the extract and replace
◊ “Pockets” are now markers that we turn on and off

• Use:
◊ Mark and Transform Algorithms
◊ Markup for Human Consumption

• HSML [Cordy et al.]
◊ Automates much of this technique

ELEC 875 – Design Recovery and Automated Evolution

Annotation Strategy
rule transformAssignment
 replace $ [assignment]
 Lval [lvalue] ‘= E [expression] ‘$
 by
 LVal [doSomething1]
 ‘=
 E [doSomething2]
end rule

ELEC 875 – Design Recovery and Automated Evolution

Ad Hoc Polymorphic Rules
• Everthing discussed until now has been strongly

typed.
◊ Impossible to build a bad tree

• [any] changes that
◊ Allows more generic rules
◊ As a pattern matches any tree
◊ As a parameter type, accepts any tree
◊ Cannot be constructed, only matched and bound
◊ Tree retains its internal structure (can be searched)
◊ Allows replacement to break grammar (dangerous)
◊ Page 36-40 of the language reference manual

ELEC 875 – Design Recovery and Automated Evolution

Ad Hoc Polymorphic Rules
rule markupStatementsMentioning Ids [repeat id]
 Markup [id]
 skipping [markup]
 replace $ [statement]
 Stmt [statement]
 where
 Stmt [contains each Ids]
 by
 Stmt [markupWith Markup]
end rule

ELEC 875 – Design Recovery and Automated Evolution

Ad Hoc Polymorphic Rules
define markup
 '< [id] '> [any] '</ [id] '>
end define

function markupWith Tag [id]
 replace [any]
 Any [any]
 construct Markup [markup]
 '< Tag '> Any '</ Tag '>
 deconstruct Markup
 MarkupAny [any]
 by
 MarkupAny
end function

