
The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 1

Excerpts from
The TXL Cookbook, Part I

TXL Basics

James R. Cordy

School of Computing
Queen's University at Kingston,

Canada

Tom
ELEC 875 only - Not for distribution

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 2

Agenda
• In this tutorial we will be exploring a set of excerpts from the  
 TXL Cookbook

 • Some representative problems and solutions in program
 processing and analysis using TXL

• The tutorial will proceed in three parts:
 • A basic introduction to TXL
 (for those new to it)
 • Parsing and restructuring problems and recipes for TXL
 (foundations for many solutions)
 • Transformation and analysis problems and recipes for TXL
 (selections from the TXL Cookbook)

goal: A basic understanding of using TXL effectively in restructuring,
 analysis and transformation tasks

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 3

The TXL Programming Language
• Original purpose (1983, the golden age of PL’s):

 DSL for experiments in language notations, dialects and extensions
 • Variants, DSLs of Turing
 • OOT (OO variant), and NT (numerical computation variant) of

 Turing originally rapid prototyped using TXL

• Actual uses (1990-present, the dark age of PLs):
 Source analysis, software renovation, system migration,
 generative programming, security analysis, clone detection, MDE
 • Code generation from models (1992)
 • Design recovery (1994)
 • Financial systems, Y2K (1997)
 • Airline mergers (2000)
 • Secuirty analysis and risk prevention (2003-)
 • UML model extraction and transformation (2005-)
 • Clone detection and resolution (NICAD, Simone) (2007-)
 • Over 250 companies and universities using in last 10 years
 • Over 100 refereed papers on uses in last 5 years

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 4

The TXL Paradigm
• the TXL paradigm consists of parsing the input text into a structure tree,
 transforming the tree to create a new structure tree, and unparsing
 the new tree to a new output text

Parse
Input
Text

Parse

Tree

Trans-
formed

Parse
Tree

Output
Text

blue fish marlin

fish

blue

[repeat word]

[repeat word][word]

[word] [empty]

[repeat word]

[word] [empty]

marlin

Transform Unparse

tip: You can think of TXL in this way at every level

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 5

The TXL Processor
• Grammars and transformation rules are specified in the TXL language
• the TXL processor efficiently implements the TXL language

tip: One transformation at a time - think cascaded sequence

TXL
Processor

Original
Source

Artifact

TXL Program
Grammatical Structure

Specification
Structural

Transformation Rules

Transformed
Source

Artifact

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 6

Anatomy of a TXL Program

• The base grammar defines the
 lexical forms (tokens) and the rooted
 set of syntactic forms (nonterminals
 or types) of the input language -
 usually an include statement

tip: Keep grammar and ruleset in topological order to aid readability

Grammar Overrides

program nonterminal

Grammar

main rule

Transformation
Rules

• The optional grammar overrides
 extend or modify types of the grammar
 to allow output and intermediate
 forms of the transformation

• The ruleset defines the rooted set of
 transformation rules and functions

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 7

The Grammar: Lexical Forms
• The tokens statement gives regular expressions for each class
 of token in the input language

tip: The predefined defaults are often sufficient for a first version

tokens
 hexnumber "0[Xx][\dABCDEFabcdef]+"
end tokens

• Predefined defaults include C-style identifiers [id], integer and float
 numbers [number], string literals [stringlit], [charlit]

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 8

The Grammar: Lexical Forms (cont'd)

tip: Most tasks can ignore comments

• The comments statement specifies the commenting conventions
 of the input language

comments
 /* */
 //
end comments

• By default, comments are ignored (treated as white space) by TXL,
 but they can be treated as significant symbols if desired

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 9

The Grammar: Lexical Forms (cont'd)
• The keys statement specifies that certain identifiers are to be
 treated as unique special symbols (and not as identifiers)

tip: TXL comments start with % to end of line

% keywords of Pascal
keys
 program procedure function
 repeat until for while do begin 'end
end keys

• The compounds statement specifies character sequences to
 be treated as a single character

compounds
 := <= >= -> <-> '%= % note quoted %
end compounds

 (Really just a shorthand for an unnamed token definition)

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 10

The Grammar: Syntactic Forms
• Syntactic forms (nonterminal symbols or types) specify how
 sequences of input symbols are grouped into the structures of
 the input language

• Specified using an (almost) unrestricted ambiguous context free
 grammar in extended BNF notation, where

 X terminal symbols represent themselves (optional 'X)
 [X] nonterminal types appear in brackets

 | or bar separates alternative syntactic forms

tip: Each TXL program defines its own symbols and type system

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 11

define program % goal symbol of input
 [expression]
end define

define expression
 [term]
 | [expression] + [term]
 | [expression] – [term]
end define

define term
 [primary]
 | [term] * [primary]
 | [term] / [primary]
end define

define primary
 [number]
 | ([expression])
end define

The Grammar: Syntactic Forms (cont'd)
• Each nonterminal type is specified using a define statement
• The special type [program] describes the structure of the entire input

tip: Grammars are most efficient and natural when most user-oriented
 – avoid Yacc-style "implementation" grammars

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 12

The Grammar: Syntactic Forms (cont'd)

• Extended BNF-like sequence notation

[repeat X] or [X*] % sequence of zero or more (X*)

[repeat X+] or [X+] % sequence of one or more (X+)

[list X] or [X,] % comma-separated list zero or more

[list X+] or [X,+] % comma-separated list one or more

[opt X] or [X?] % optional (zero or one)

tip: For more natural patterns, always use repeat and list for sequences
tip: Use less restrictive grammars rather than syntax checkers

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 13

The Grammar: Syntactic Forms (cont'd)
• Formatting cues in defines specify how to format output

[NL] newline in unparsed output
[IN] indent unparsed output by four spaces
[EX] exdent unparsed output by four spaces

tip: Formatting cues have no effect on input parsing

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 14

Input Parsing
• Input is automatically tokenized and parsed
 according to the grammar

• The entire input must be recognizable as
 the type [program]

• The result is represented internally as a
 parse tree

• All pattern matching and transformation
 operations work on the parse tree

tip: Syntax errors may indicate an incorrect grammar rather
 than malformed input

31 + 5 + 17

[expression]

+

[primary]

[term]

[number] 17

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] 5

[number] 31

[program]

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 15

% The original example grammar

include ”Expr.grm”

% Override to allow identifiers and lists of expressions

redefine primary
 [id]
 | [number]
 | ([list expression+])
end redefine

Base Grammars and Overrides
• The base grammar for the syntax of the input language is normally
 kept in a separate grammar file which is rarely if ever changed,
 and is included in the TXL program

• Dialects and extra output forms are added to the base grammar
 using grammar overrides, which modify or extend the base
 grammar's lexical and syntactic forms

tip: The crafting of grammars is the most critical step in the success
 of a TXL project!

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 16

% The C language grammar

include ”C.grm”

% Override to allow statements to have XML markup

redefine statement
 ...

 | <[id]> [statement] </[id]>
end redefine

Base Grammars and Overrides (cont’d)
• Grammar overrides can also be used to extend the existing forms of
 a nonterminal type

 • Using “...” to refer to the original definition

tip: Grammar extensions can be independent of most changes
 to the base grammar

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 17

% replace every 1+1 expression by 2

rule addOnePlusOne
 replace [expression] % target type to search for
 1 + 1 % pattern to match
 by
 2 % replacement to make
end rule

Transformation Rules
• The actual input to output source transformation is specified using
 a rooted set of transformation rules

• Each transformation rule specifies:
• A target type to be transformed

 • A pattern (example of the instances that we want to replace)
• A replacement (example of the result we want when we find one)

tip: TXL rules are strongly typed - the replacement must be of
 the same type as the pattern

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 18

rule optimizeAddZero
 replace [expression]
 N1 [number] + 0
 by
 N1
end rule

Transformation Rules (cont'd)
• The pattern can be thought of as an actual source text example of
 the instances we want to replace
• Patterns consist of tokens (terminal symbols which represent
 themselves) and named variables (nonterminal types which
 match any instance of the type)

tip: Think by example, not by parse tree

• When the pattern is matched, variable names are bound to the
 corresponding instances of their types in the match

• Variables can be used in the replacement to copy their
 bound instance into the result

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 19

rule resolveAdditions
 replace [expression]
 N1 [number] + N2 [number]
 by
 N1 [+ N2] % [+] is one of TXL’s built-in functions
end rule

Transformation Rules (cont'd)
• Similarly, the replacement is a source text example of the desired result
• Replacements consist of tokens and references to bound variables,
 whose bound instance is copied into the result
• References to variables can be optionally transformed by subrules
 (other transformation rules), which transform (only) the copy of the
 variable's bound instance before it is copied into the result
• Subrules are applied to a variable reference using square bracket
 notation X[f], which in function notation would be f(X)

tip: X[f][g] denotes functional composition - g(f(X))

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 20

function main
 replace [program]
 EntireInput [program]
 by
 EntireInput [resolveAdditions]
 [resolveSubtractions]
 [resolveMultiplys]
 [resolveDivisions]
end function

Transformation Rules (cont'd)
• When a rule is applied to a variable, we say that the variable's
 copied value is the rule's scope

• A rule application only transforms inside the scope it is applied to

• The distinguished rule called main is automatically applied to the
 entire input as its scope

• any other rules must be explicitly applied as subrules

tip: Often the main rule is a simple function to apply other rules

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 21

Rules and Functions
• TXL has two kinds of transformation rules, rules and functions,
 which are distinguished by whether they should transform only
 one (for functions) or many (for rules) occurrences of their pattern
• By default, rules repeatedly search their scope for the first instance
 of their target type matching their pattern, transform it in place
 to yield a new scope, and then reapply to the entire new scope
 until no more matches are found
• By default, functions do not search, but attempt to match only their
 entire scope to their pattern, transforming it if it matches

tip: Use functions to apply several rules to a single scope

function resolveEntireAdditionExpression
 replace [expression]
 N1 [number] + N2 [number]
 by
 N1 [+ N2]
end function

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 22

Rules and Functions (cont'd)
• Searching functions, denoted by replace * , search to find the first
 occurrence of their pattern in their scope but do not repeat

tip: Use searching functions when only one match is expected

function resolveFirstAdditionExpression
 replace * [expression]
 N1 [number] + N2 [number]
 by
 N1 [+ N2]
end function

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 23

Rules and Functions (cont'd)
• Subrules and functions may be passed parameters, which bind the
 values of variables in the applying rule to the formal parameters
 of the subrule

tip: Use parameters to build transformed results from many parts

rule resolveConstants
 replace [repeat statement]
 const C [id] = V [expression];
 RestOfScope [repeat statement]
 by
 RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id] Value [expression]
 replace [primary]
 ConstName
 by
 (Value)
end rule

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 24

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

N2: [number] (v2)

N1: [number] (v1)

[expression]

[primary]

[term]

[number] (v1+v2)

Patterns and Replacements
• Patterns and replacements are parsed in the same way as the input,
 to make pattern tree => replacement tree pairs

rule resolveAdditions
 replace [expression]
 N1[number] + N2[number]
 by
 N1 [+ N2]
end rule

tip: But think by example when authoring rules, not about the trees!

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 25

Patterns and Replacements (cont'd)
• Rules are implemented by searching the scope parse tree for
 tree pattern matches of the pattern tree , and replacing instances
 with corresponding instantiations of the replacement tree

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] (17)

[number] (36)

53

[expression]

+

[primary]

[term]

[number] (17)

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] (5)

[number] (31)

31 + 5 + 17 36 + 17

[expression]

[term]

[primary]

[number] (53)

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 26

Patterns and Replacements (cont'd)
• Patterns may use previously bound variables later in the pattern
 (strong pattern matching)

• This effectively parameterizes the pattern with a copy of the bound
 variable, to specify that two parts of the matching instance must be
 the same to have a match

rule optimizeDoubles
 replace [expression]
 E [term] + E
 by
 2 * E
end rule

• Patterns can also be parameterized by formal parameters of the rule,
 or other bound variables, to specify that matching instances must
 contain an identical copy of the variable's bound value at that point
 in the pattern

tip: References to a variable always mean a copy of its bound value,
 no matter what the context

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 27

Deconstructors and Constructors
• Patterns may be piecewise refined to more specific patterns using
 deconstruct clauses

rule optimizeFalseIfs
 replace [statement*]
 IfStatement [if_statement] ;
 RestOfStatements [statement*]

 deconstruct * [if_condition] IfStatement
 IfCond [if_condition]

 deconstruct IfCond
 false
 by
 RestOfStatements
end rule

• Deconstructors specify that the deconstructed variable's bound value
 must match the given pattern - if not, the entire pattern match fails
• Deconstructors act like functions - by default, the entire bound value
 must match the deconstructor's pattern, but deconstruct *
 (a deep deconstruct) searches within the bound value for a match

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 28

Deconstructors and Constructors (cont'd)
• Pattern matches can also be constrained using where clauses

• Allows arbitrary matching conditions tested by subrules
rule vectorizeScalarAssignments

 replace [statement*]
 V1 [variable] := E1 [expression];
 V2 [variable] := E2 [expression];
 RestOfScope [statement*]

 where not
 E2 [references V1]

 where not
 E1 [references V2]

 by
 < V1,V2 > := < E1,E2 > ;
 RestOfScope
end rule

tip: It's always better to use a deconstruct than a where clause

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 29

• Where clauses use a special kind of rule called a condition rule

• Condition rules have only a (possibly very complex) pattern,
 but no replacement - they simply succeed or fail

function references V [variable]

 deconstruct * [id] V
 Vid [id]

 match * [id]
 Vid
end function

Deconstructors and Constructors (cont'd)

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 30

• Replacements can also be piecewise refined to construct
 results from several independent pieces

rule addToSortedSequence NewNum [number]

 replace [number*]
 OldSortedSequence [number*]

 construct NewUnsortedSequence [number*]
 NewNum OldSortedSequence

 by
 NewUnsortedSequence [sortFirstIntoPlace]
end rule

• Constructors allow partial results to be bound to new variables,
 allowing subrules to further transform them

tip: In complex rules, liberal use of constructs aids readability

Deconstructors and Constructors (cont'd)

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 31

Authoring TXL Programs
• TXL is primarily intended as a rapid prototyping platform, and is  
 ideally suited to extreme programming

• Begin with an explicit set of test cases, and treat these as the
 specification of your transformation

• Program your transformation incrementally, as a sequence of
 successive approximations to the final result

• Actually run your partial transforms against the test cases to keep
 track of your progress and test as you go

• Always write the simplest possible transformation rules to achieve
 the result - don't worry about efficiency until you are done

• Begin each rule with an explicit example pattern and replacement,
 and generalize from there

tip: TXL programs tune incredibly well - factors of 10 to 100 are common

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 32

Authoring TXL Programs (example)

• Step 1 - Start with an explicit concrete example case

tip: Test at every stage!

rule convertAddIJK
 replace [statement]
 ADD I TO J GIVING K % COBOL
 by
 K = I + J; % PL/I
end rule

• Step 2 - Generalize by introducing pattern variables

rule convertAddGiving
 replace [statement]
 ADD I [operand] TO J [operand] GIVING K [operand]
 by
 K = I + J;
end rule

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 33

Authoring TXL Programs (example)

• Step 3 - Specialize by identifying, testing and generalizing special
 cases in the same way

rule convertAddNoGiving
 replace [statement]
 ADD I [operand] TO J [operand]
 by
 J = J + I;
end rule

• Step 4 - Integrate by abstracting and prioritizing cases
rule convertAdds
 replace [statement]
 AddStatement [COBOL_add_statement]
 by
 AddStatement [convertAdd1]
 [convertAddNoGiving]
 [convertAddGiving]
 [checkAddConverted]
end rule

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 34

Authoring TXL Programs (example)

• Step 5 - Constrain to semantically precise conditions
 (get the details right!)

rule convertAddBinaryOnly

 replace [statement]
 ADD I [identifier] TO J [identifier]

 where
 I [FB_hasFactWithAttribute ‘FieldSize ‘COMP]
 where
 J [FB_hasFactWithAttribute ‘FieldSize ‘COMP]
 by
 J = J + I;
end rule

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 35

Understanding TXL
• TXL is not really a source transformation system
 • It is a language for authoring source transformation systems

• A TXL “grammar” is not really a grammar
 • TXL has no grammar analyzer or parser generator
 • The grammar is a functional program for parsing the input
 • Direct control over parse - flexibility vs automation

• A TXL transformation “rule set” is not really a term rewriting system
 • No globally applied rules, no traversals or strategies
 • The rules are a functional program for transforming the input
 • Direct control over traversal and strategy - flexibility vs automation

tip: Nothing is hidden in TXL – no magic

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 36

Understanding TXL (cont’d)
• TXL programs are completely self-contained
 • No dependence on external parsers, frameworks, tools, libraries,
 other languages or notations
 • Everything is in the TXL program source

• TXL programs are interpreted directly
 • No compile step, just run directly from source
 • No portability issues

• TXL processor also has no dependencies
 • Install and go, requires nothing else

tip: Install TXL and run

The TXL Cookbook, Part I SANER 2015© 2015 J.R. Cordy Slide 37

That’s It!

• Basically, that’s TXL
 • Everything else is in how you use it – the recipes

• Next:
• TXL practice lab #1– get started,  

try a simple transformation

• Then:
• Part II: Some Recipes for Parsing and Language

Manipulation Problems using TXL

