
Detection of Feature Interaction in Dynamic Scripting
Languages

Omar A. Al Harthi
Queen’s University
Kingston, Canada

14oaah@queensu.ca

Manar H. Alalfi
Ryerson University

Toronto, Canada
manar.alalfi@ryerson.ca

Thomas Dean
Queen’s University
Kingston, Canada

tom.dean@queensu.ca

ABSTRACT
In Plugin-based systems, merging plugins in one page is usually
safe, but sometimes it may fail due to feature interaction. While
these plugins work correctly when tested alone, they may fail or
show unexpected behavior when one or more are used together. To
identify and locate the causes of interference, one must inspect the
plugin code and possibly examine assignment traces using proper
analysis methods. However, manually testing thousands of plugins
is not feasible, especially if many of the plugins lack appropriate
documentation. Our goal is to introduce an automated detection
framework based on static and dynamic analysis to detect potential
feature interaction. In this paper, we will focus primarily on static
analysis and plan to cover the dynamic analysis at a later stage.

First, we present the results of an initial study we conducted on
an example plugin system, JQuery, and that to classify the types of
conflicts found and to presents a list of patterns of objects assignment,
then we present our automated static analysis approach designed to
capture the patterns of conflicts. Finally, we present an experiment
which applies our approach to a dataset of 2081 JQuery plugins and
identified around 357K expression patterns. Our approach flagged
255 expressions as cases of duplicate objects names, and 180 as
cases of duplicate global names.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools;
Software design tradeoffs; Automatic programming.

KEYWORDS
Features interactions, Static Analysis, Plugin Systems

ACM Reference Format:
Omar A. Al Harthi, Manar H. Alalfi, and Thomas Dean. 2019. Detection
of Feature Interaction in Dynamic Scripting Languages. In CASCON ’19:
29th Annual International Conference on Computer Science and Software
Engineering, Nov 04–05, 2019, Toronto, ON. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CASCON ’19, Nov 04–06, 2019, Toronto, ON
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
In software development, features are considered as extra functional-
ity added to the software system. Features interactions have been an
issue in telecommunication and software systems, it is unintended
behaviour in software systems due to a conflict in the use of one or
more resources by different features. The more features included in a
system, the more interactions can occur [1]. In plugin-based systems,
features are added gradually at different phases in the software life-
cycle by separate developers. Usually, plugins are tested in isolation,
but when added to a particular system, there is an opportunity for
interaction (i.e., behavioural changes) between the features merged
within that system. Generally, interactions can cause problems in sys-
tem development and user expectations. Some interactions, however,
are harmless [2].

JavaScript [28], is a popular language for client-side development
which supports a variety of libraries (e.g., MooTools, jQuery, and
Dojo), templates (e.g., Bootstrap), and frameworks (e.g., Amber,
Angular, React). Some of these libraries, in turn, support hundreds
of thousands of plugins. Such libraries have their ecosystem and
support communities that may use, extend and modify the resources.
This complicated, dynamic and interactive environment may suffer
from a lack of proper support for declaring modules, classes, and
namespaces in JavaScript language and consequently generates sev-
eral potential conflicts unless enhanced with continuous updates [15].
Developers need a way to realize and avoid harmful interactions
and to develop applications in a conflict-aware environment, as such,
in this paper we present an automated approach for interference
detection for JavaScript plugins to address this challenge.

JQuery is a popular JavaScript library that improves the capabili-
ties of JavaScript by creating extensions to manipulate the properties
of objects on the page. Developers rely on jQuery plugins to support
their applications’ performance, appearance and security. JavaScript
web applications use libraries to provide convenient functionalities,
and these libraries usually take advantage of the dynamic features of
the language [3].

To understand how the problems arise when using jQuery plugins,
consider a scenario in which a developer decides to download and
use one or more of the published plugins. For example, a developer
may download a plugin for an image slider to view images and may
also install a date picker plugin to allow users to pick start and end
dates. When using both plugins on the same page, they might fail to
function correctly due to attempts to manipulate or alter the same
resources. The failures may be minor, or they may result in ultimate
failure of one or both plugins.

To identify and locate the causes of interference, one must inspect
the plugin code and possibly examine assignment traces using proper
analysis methods. However, manually testing thousands of plugins

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CASCON ’19, Nov 04–06, 2019, Toronto, ON Omar A. Al Harthi, Manar H. Alalfi, and Thomas Dean

is not feasible, especially if many of the plugins lack appropriate
documentation. Our goal is to introduce an automated detection
framework based on static and dynamic analysis to detect potential
feature interaction. In this paper, we will focus primarily on static
analysis and plan to cover the dynamic analysis at a later stage.

The rest of this paper comprises of six sections. Section 2 presents
some background to the problem we address. Section 3 shows the
results of the initial study on the sources of interaction in JQuery
plugins. Section 3.4 gives our approach to finding interactions stati-
cally. Section 4 provide the results of our approach. Section 5 give
some related work and section 6 concludes the paper.

2 BACKGROUND
Plugin-based systems used increasingly in web applications, both
on the server and client side. Problems with the merging of mul-
tiple plugins may cause frustration for both users and developers.
By tracking some of code exchange and learning forums such as
StackoverFlow [21], Stackexchange [22] and Github [23], we find
that users complain of problems when merging two plugins into one
page. Due to time constraints, a user will start to look for another
plugin instead of investigating and fixing the problem. Duplicate
names in different source files is a common problem. It seem simple
at first glance and to avoid it we can change the conflicting name in
one of the plugins. However, changing the name may cause other
problems because the name may have other usages, or could be
involved in unknown dependencies that are intentionally hidden.

Recent research examines possible interference in web applica-
tions and presents approaches to help in detecting them. Eshkavari
et al. [4] identify plugin interference in WordPress by instrument-
ing PHP code. This work motivated us to try something similar for
JavaScript and jQuery plugins.

Developers use traditional techniques in programming languages
to facilitate code encapsulation and code reuse. For example, con-
structors such as classes and modules, usually need encapsulation
to decrease the amount of code, and code reuse to reduce code
repetition. Such concepts are used extensively by JavaScript commu-
nities and individual developers, which enrich the code modularity
of JavaScript. A developer can do a separate task in different syntax,
although it might create some debugging issues, it allows to apply
better solutions to emulate such syntaxes [6].

2.1 The Issue with JavaScript
JavaScript is ranked as the most popular programming language
on GitHub [20]. The significant number of published JavaScript
applications, libraries, frameworks and plugins along with the lack
of naming standards makes JavaScript applications more exposed
to feature interaction. A plugin can easily overwrite an object of
another plugin, or it can modify, delete, or accidentally use the object
of another plugin. It is one consequence of the weak typing in the
JavaScript language [14].

In JavaScript, everything is an object, and these objects have
multiple methods and properties. Defining variables and functions
in the global scope make them properties of the ’window’ object.
Also, all loaded scripts have access to global objects, and they can
be redefined or assigned to new names. If a name already exists, it
can be overwritten, and this usually leads to a conflict. This type

of conflict can be detected via static code analysis if all predefined
properties of the window object are known, or we can get a complete
list of code patterns that are responsible for objects creation and
assignment [28].

The same happens when creating an object, if multiple scripts
access and write to the same object, then it is a potential conflict.
Since jQuery plugins are an extension of a global object, a different
code can access those global objects. Strict naming rules are needed
to avoid possible interference. In reality, developers often use com-
mon names. Generally speaking, the same name can be detected
by static and dynamic analysis. However, the dynamic feature of
JavaScript makes such analysis more complicated [5]. Another fea-
ture in JavaScript is that one can add properties to the object after
class definition, change the type of a property, or change a prop-
erty from a value to a method (and vice versa). This feature makes
JavaScript a very flexible and powerful object-oriented language,
but at the same time, it complicates error tracking. In JavaScript,
developers can do one thing in several ways, but this has advantages
and disadvantages. From one side it enables the developer to work
around the restrictions and rules, but also more opportunities for
error [7].

A real-world example of a plugin conflict shown in Fig. 1, listing
1 shows code snippets of jquery.sliderJS.js, a plugin that allows
sliding the images in the page. While jShowOff is a content rotator
plugin. When combined on the same page, both plugins write to the
global object named "jQuery.fn.slideIt". By accessing this object
and assigning it to different functions or values, the second plugin
jShowOff will overwrite the value and as a consequence sliderJS.js
will use the wrong function. A similar error when one function is
overwritten by another is shown in listings 1.3 and 1.4 of Fig. 1,
where two conflicting plugins, Birdman.js and StatusBoard.js, are
storing conflicting functions in the same property: jQuery.fn.lettering.
Common names like cleandata, remove, resetform, gallery, and slide,
are used frequently by developers.

In Fig. 2, plugin 1 and plugin 2 declare functions names in the
global scope. In JavaScript, when a function or a variable declared
in the global scope, it becomes a property of the object window.
If both plugins loaded in one page, then the latest will ultimately
override the first one and return the wrong value. Fig. 3, shows a
real-world example of conflicting plugins declaring same function
name in global scope. And more examples of real-world plugins that
are declaring the same global variable names shown in Fig. 4.

3 APPROACH
We conducted an initial study and found that duplicate names are
still a problem with jQuery plugins. It remains a problem even when
applying techniques like namespaces and the noConflict() function.
We tracked users’ complaints from different forums on the Internet
regarding cases where duplicate names are responsible for conflicts
between jQuery plugins and we found many instances. The main
complaints are:

∙ A new plugin is not working as expected, different from when
running alone

∙ An unexpected change in the behavior of a particular function
∙ Alteration of an element’s location, shape, size, color or it

disappears.

Detection of Feature Interaction in Dynamic Scripting Languages CASCON ’19, Nov 04–06, 2019, Toronto, ON

(function($) {
$.fn.slideIt = function(options) {

var container = $('.slideIt');
/* code */
}

}

Listing 1: plugin 1: jquery.sliderJS.js

function($) {
$.fn.slideIt = function(settings,callback) {

var config = { direction : 'left'};
/* code */
}

}

Listing 2: plugin 2: jquery.jshowoff.js

(function($){
jQuery.fn.lettering = function(method) {

/* code */
}

}

Listing 3: plugin 1: Birdman.js

(function($){
jQuery.fn.lettering = function(method) {

/* code */
}

}

Listing 4: plugin 2: StatusBoard.js

Figure 1: A real-world example of two conflicting plugins that may experience unexpected behavior when loading together.

$.fn.disable = function disable() {
return this.on('click.disable'
}).addClass('disabled').prop('disabled',true);
/* code */
})(jQuery);

Listing 5: plugin 1: mpolun-disable.js

$.fn.extend({
disable: function () {
$(this).attr("disabled", "disabled"); /* code */
}(jQuery);

Listing 6: plugin 2: pem-functions.js

Figure 2: Another example from real-world using different patterns $.fn.disable & pattern: $.fn.extend.foo =

function linkify(string, noFollow){
relNoFollow = "";
if (noFollow) { /* code */}

Listing 7: plugin 1: Opal-plugins.js

var linkify = function() {};
;(function($, linkify) {
relNoFollow = /*code*/; }

Listing 8: plugin 2: jquery.twitter.js

Figure 3: A real-world example of conflicting plugins declaring same function name in global scope object name: $.fn.disable and
pattern: $.fn.extend.foo =.

window.onresize = throttle(function() {
var widthFlagResize = window.innerWidth;
if (flag != widthFlagResize) {
self.init(self.options);/* code */
}
});

Listing 9: plugin 1: cardshow.js

jQuery(document).ready(function($) {
window.onresize = function() {

$(".modelImage").height($(".modelImage").width() / 3 * 2);
}

/* code */
});

Listing 10: plugin 2: home.js

(function($) {
$.pixelAlignSvgs = function() {
$.each($("svg"), function(){ /*code*/
window.onresize = $.pixelAlignSvgs
};})(jQuery);

Listing 11: plugin 1: jquery.pixel-align.js

if($(this).length > 0){
window.onresize = function(){
});} /* code */
return $this; };
}(jQuery));

Listing 12: plugin 2: pycs-layout.jquery.js

Figure 4: Another example of real-world’s plugins declaring same global variable name

Based on our initial analysis we created a classification of patterns
of conflicts as explained in the following subsection.

3.1 Classification of Conflicts
This section classifies the types of conflicts found in our study and
presents a list of patterns of objects assignment. The patterns are
collected from different resources, such as jQuery guide manuals,
books, and forums. We found some patterns from the source code of
jQuery release versions and published plugins. Our tool also helped
to identify new patterns. JavaScript conflicts can be grouped into:

∙ Global Names Conflicts: A global object in a browser is a
property of the window object. Global variables, constants,

$ foo = window;$
$ window.foo = foo2 = 4;$
$ var foo = 4;$

Figure 5: Different ways of declaring global variables

and functions are properties of this window object, an exam-
ple illustrated in Fig. 5.

∙ jQuery Object Name Conflicts: Objects can be mutated, and
their properties can be changed, built-in objects in JavaScript
like Array, String, etc., can also be extended and their proto-
type properties can be changed too. A possible case of conflict

CASCON ’19, Nov 04–06, 2019, Toronto, ON Omar A. Al Harthi, Manar H. Alalfi, and Thomas Dean

$.fn.foo = function(){ } /* Plugin one*/
jQuery.fn.foo = function(){ } /* Plugin two*/

Figure 6: Example of two plugins trying to write to same global
jQuery name

1. $.fn.name =
2. $.fn.extend({ name: })
// different ways of representing jquery objects
2.1 $.fn.extend({drag(){
2.2 $.fn.extend({ foo: { bar: x } })
2.3 $.method_name = ({ [property name1, name2,..nameN}
2.4 (function(a){ a.fn.name = })(jQuery)
2.5 eval($.fn.name =)
// possible ways of accessing & changing jQuery objects and

properties
3. $.fn.prototype.name =
4. $.fn.__proto__.name =
5. $.fn.prototype.prototype.name =
6. Object.defineProperties(jquery, object)
7. Object.defineProperty(jquery, name, value)
8. Object.assign(target, obj1, objn);
9. Object.freeze()
10. Object.preventExtensions()
11. Object.seal()
12. Object.setPrototypeOf()

Figure 7: Different patterns of targeted assignment expressions

is when two plugins are trying to access the same object, and
it does not matter what they assign to, they will conflict with
each other due to the closure scope concept, an example of
such conflict illustrated in Fig. 6:

In JavaScript there are multiple ways of assigning objects, adding
or deleting properties of an object. Fig. 7, shows a list of some of
the patterns which can be detected statically. The list shows the
possible variations in JavaScript. While these patterns are similar to
those in conventional object-oriented languages, it can create new
properties or change the class (prototype) of an object, or change
a value in the prototype which will affect all objects refer to the
same prototype. This unintended alteration can lead to incorrect
output or unexpected behavior. JavaScript language is very flexible,
with exceptional programming skills, a developer can find multiple
new ways to do a single task, therefore, building a complete list of
patterns is challenging. Instead, we look to provide coverage of the
most common patterns.

For instance, pattern 1

$.𝑓𝑛.𝑛𝑎𝑚𝑒 = (1)

is responsible for accessing properties in the global jQuery object,
such pattern presents potential cases of conflict. Patterns 2.1-2.5 are
another way of expressing the jQuery object with same function as
pattern 1

$.𝑓𝑛.𝑒𝑥𝑡𝑒𝑛𝑑𝑛𝑎𝑚𝑒 : (2)

Patterns 2.1-2.3 in Fig.7 use the extend method, which allows the
programmer to add new properties to the parent property. Our ap-
proach detects such expressions and extracts all names included
in the method argument. Patterns 2.4 and 2.5 allowing passing
a parameter as a jQuery object and using of eval() command to
pass JavaScript code include assignment expression respectively.
While patterns 3-12 are properties of the standard built-in objects in

$.undefined :
{"type":"computed","file":"/Users/omar/Documents/deploy/all/jquery

-i18next.js","start":{"line":115,"column":2}}
$.easing.undefined :
{"type":"computed","file":"/Users/omar/Documents/deploy/all/jquery

.scrollify.js","start":{"line":207,"column":2}}

Figure 8: Investigating "undefined" names from the results
helped us to detect more patterns

JavaScript, and the impacts on the performance of changing inheri-
tance are ambiguous, it can reach the code that has access to objects
with an altered prototype. Therefore, it is always recommended to
create a new object with the desired prototype using Object.create(),
instead of setting the prototype of an object [19].

Other built-in properties (i.e., defineProperty, defineProperties,
freeze, seal, assign, setPrototypeOf and presevrntExtensionOf) are
commonly used and can alter the object and its properties as well.
To obtain the best results we detect these expressions and extract the
names used within their arguments.

We analyze each pattern through the AST (Abstract Syntax Tree)
builder and create an algorithm that emulates their usage in the
jQuery files to extract the objects’ and properties’ names.

3.2 New Patterns
Our tool helps us to detect new patterns, through the observations of
the tests results, shown in Fig. 8, and after locating the "undefined"
names of the object member expression, we can investigate possible
patterns of the object’s assignments, once verified, we add it to our
analysis algorithm to capture the correct property name.

3.3 Challenges
Some of the published JQuery plugins lack standard documenta-
tion which makes the plugin unreliable for testing. The presence
of proper documentation helps to collect the required dependencies
and build a reliable test environment. This behavior is usually found
in a few online resources such as the jQuery website, where the
community approves the published plugins. But the jQuery site has
less than 3000 plugins, which is small compared to the 30000 jQuery
plugins published on Github alone. Our goal is to provide automated
detection of conflicts using a combination of static and dynamic anal-
ysis. Most of the patterns are static, but we also list some patterns
to be covered by the future dynamic analysis. Another difficulty
found in our initial study is when a plugin file has more than one
version with different names, this leads to spurious duplicate results.
Developers may also clone part of a plugin into a new plugin with a
very minimal change, leading to duplicate results as well.

3.4 Static Analysis
Our static analysis starts by scanning the pool of candidates, one
by one. For each candidate, we parse into an AST using the Acorn
parser [24]. We check if it is a JavaScript file or a jQuery plugin file.
JQuery plugins are identified by the use of $ as a global variable
or the identifier jQuery. We search for occurrences of the patterns
given in the list of conflict patterns found in our initial study. When a
match is detected, we capture the members of the expressions which
includes the object name and the chain of properties. We save the

Detection of Feature Interaction in Dynamic Scripting Languages CASCON ’19, Nov 04–06, 2019, Toronto, ON

Figure 9: Proposed Static Analysis Approach
--
Table 1: Used JavaScript plugins for the evaluation.
--

Min Median Max Total
jQuery plugins 1 1040 2081 2088
Lines of code 3 1397 13,837 758,118
Size (bytes) 47 56,080 750,207 30,567,105

Patterns expression analyzed : 357281

Cases of duplicate objects names 255

Cases of duplicate global names 180

most common patterns: 1- $.fn.foo = 702
2- $.fn.extend = 124

Figure 10: Test Set

types of the value and the name of the files in JSON format keyed
by the assigned name.

We use Node.js [29], and the Acorn parser. The Acorn parser
package provides a traversal mechanism that we use to examine the
nodes looking for the target assignment patterns. We detect ’jQuery’
and $ on the left side of an assignment expression and extract the
full names of objects and their properties.

We check function body nodes in the AST. Each function body
node has a fixed parameter array, containing the function body, type,
start and end. Then we track the "type" node, find any assignment
expression positioned on the left side of the body code because it is
the explicit way of accessing and altering the object. Next we check
the first value of the left part of the assignment expression, if it has
a type of "object" which has a value of "jQuery" or the dollar sign,
then we traverse the chain of this node and capture the values of
each property on that chain (full dotted name).

Fig. 9, illustrates the process flow of our static analysis for colli-
sions of global names and jQuery objects names, where we have at
least two inputs of JavaScript code(e.g., variables, functions, meth-
ods). We compare the names from both modules, if there is a match,
and both plugins are trying to write into the same object, then it is
considered as a potential cause of conflict.

name: $next -
{"type":"auto","file":"/adrianjmiller-jquery.animate.js"}
{"type":"auto","file":"/jquery.inputMachinator.js"}

name: result -
{"type":"auto","file":"/birdman.js"}
{"type":"auto","file":"/jquery-barcode.js"}
{"type":"auto","file":"/jquery-smart-append.js"}
{"type":"auto","file":"/jquery.flatshadow.js"}
{"type":"auto","file":"/jquery.jqpagination.js"}

Figure 11: Report1: Results of detected potential conflicts of
global variables names

4 RESULTS AND DISCUSSION
We tracked complaints in different web forums [8,9,10], and tested
such plugins and found that duplicate names can cause conflicts. We
randomly collected 2088 jQuery plugins from the jQuery website
and from Github to be checked statically against our initial pattern
list. We chose from a broader set of plugins with clear documentation.
Fig. 10, shows the test set and the results.

We found 255 cases of potential conflicts. Half of the conflicts
found involved one pair of plugins, while the rest of the conflicts
involved groups of 3 to 13 plugins which increases the probability
of conflict. Through static analysis we analyze the following:

(1) Global names, including: variables declared in global scope,
functions declared in global scope, and variable names used
in any scope without declaration

(2) The jQuery version
(3) Assignment to jQuery properties (i.e. full concatenated names)
(4) Duplication of jQuery custom properties
(5) Changing prototypes for example 𝑥𝑥𝑥.__𝑝𝑟𝑜𝑡𝑜__.𝑦𝑦𝑦 and

.𝑥𝑥𝑥.𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒.𝑦𝑦𝑦
(6) Property names extending the jQuery object. (e.g. $.fn.extend(

name: ...))
(7) Detect non-standard assignments expressions such as:

someFunctionName($.xx.yy = ...)
Our tool detected 180 instances of duplicate names of global

variables that repeated in a minimum of two plugins, where almost
half of these cases found repeated in groups of 3 to 24 plugins. The
larger groups give a total of 1504 possible conflicts.

CASCON ’19, Nov 04–06, 2019, Toronto, ON Omar A. Al Harthi, Manar H. Alalfi, and Thomas Dean

$.cleanData :
{"type":"method","file":"/DoctorBot-manipulation.js"}
{"type":"method","file":"/jquery.datalink.js"}
{"type":"method","file":"/jquery.geo.js"
{"type":"method","file":"/jquery.tooltip.js"}

$.fn.remove :
{"type":"method","file":"/DoctorBot-manipulation.js"}
{"type":"method","file":"/dom.js"}
{"type":"property","file":"/jquery-1.5-hack.js"}
{"type":"method","file":"/jquery.geo.js"}
{"type":"method","file":"/mDOMupdate.js"}

Figure 12: Report2: Results of detected potential conflicts of
jQuery global names

Out of 2088 plugin files, we found 255 cases of duplicated prop-
erty names repeated in a pair of at least two plugins, where almost
half of these cases are in groups of 3 to 13 plugins, giving a total of
1370 possible case of conflicts.

Figures 11 and 12 show the reports generated from our tool for du-
plicate global variables and jQuery objects respectively. We can still
find simple and common names of global variables like next, config,
results. The same with objects and properties, names like cleanData,
remove, and reset are found. The results show that developers often
neglect basic standards of uniqueness in naming. The output also
indicates that these names are used repeatedly in different plugins.
Since developers sometimes publish new versions of their plugins,
we avoid reading the same file by checking file name and size. We
also find identical clones of targeted code repeated in many plugins.

4.1 Validation
We validated the results of our analysis by manually validating
a selection of the conflicting plugins. We extended JSfiddle [25]
to accept two plugins, and we called it JSfiddle2. We also used
Headless Chrome and the NodeJS framework to provide an execution
environment. Since there is no standard format for the distribution
or use of a JQuery plugin, each test of a plugin requires manual
intervention. Thus we randomly selected 20 conflicts reported by
our tool (total of 40 pairs of plugins).

To set up our test environment, we first examine the selected
plugin’s documentation and collect a minimal configuration. Each
of the plugins is run individually to verify that it works correctly
as a stand-alone in the JSFiddle2 environment. We store the built
configuration in a JSON file, allowing us to combine and run them
in a single page. The table in Fig. 13, shows the results of the tested
plugins. Our results confirm that each of the identified pairs of
plugins conflict.

To confirm that the conflict was a result of the plugins and not
a result of the JSFiddle2 testing environment, we also tested each
of the plugins against a plugin from different conflict pair (i.e., one
round-robin step). None of the resulting pairs of plugins conflicted,
giving us confidence that the differences in behavior are due to the
interaction between the plugins and not the testing environment.

Our testing environment allows to load and execute two plugins
at the same time. Each plugin has a separate drop-down menu to
upload HTML, CSS and JavaScript components of the plugin. The
version of the jQuery library that used for the test is selected from a

pull-down menu as well. We test the plugins alone through JsFiddle2,
where all required dependencies can be loaded prior to execution.

4.2 False Positives
Through our testing we found some cases of false positive and false
negative:

(1) Targeted patterns for dynamic analysis (Fig. 16) are possible
cases of false positives.

(2) A clear false positive is when the value of two objects or
variables is the same, this can be seen a lot due to the extensive
use of code reuse. Our tool could reduce such false positives
by eliminating repeated files names, and it can also checks
file length to avoid such duplication.

(3) Correct enveloping the method: when a developer expects
another plugin to have same global name enveloping the
previous function and pass the data to the next function (e.g.,
sniffing), in this case, the first plugin won’t be aware that third
party can actually intercept the data, such example could be
challenging to resolve because of its complexity, see Fig. 14.

(4) Another false positive example is when the code is not exe-
cuted at all, it happens that same global names are defined
in two different plugins, but one plugin doesn’t actually use
that name in a way that it changes it’s value, in other words,
nothing is assigned to that name; therefore it won’t create any
conflict.

(5) Some wrong coding practices can also lead to false positives,
for example, Fig. 15, shows wrong declaration of variables
which might turn local variables to global ones.

4.3 False Negatives
We examined false negative cases, and we found other conflicts
between jQuery plugins that couldn’t be captured through our tool
due to a different type of conflicts such as DOM and event handling
issues, such conflicts can not be detected statically. For example,
there is a conflict between the following two plugins:

(1) TableSorter v2.9.1
(2) bootstrap-popover.js v2.2.1

These plugins are working just fine separately, but when combined
on one page, the bootstrap-popover stops working. The plugin ta-
blesorter.js is somehow removing the titles from the DOM before
loading bootstrap-popover script [26].

Another case of false negative is with event handling. When
merging those two plugins: dragscrollable.js and scrollto.js, each
plugin is working correctly on a particular div, but when combining
these plugins, it looks to have a kind of interaction between the
mouse down and the click events. When holding down the mouse
to move around, the drag event occurs correctly, but when releasing
the mouse, it scrolled back to the element which held the mouse on
to start dragging [27].

4.4 Threat to Validity
While we initially planned to validate our tool by computing preci-
sion and recall, we are manually validating results, it is infeasible
to compute false positives with the large number of possible con-
flicts, more than 1500 produced by 2088 plugins. Instead we tested

Detection of Feature Interaction in Dynamic Scripting Languages CASCON ’19, Nov 04–06, 2019, Toronto, ON

Figure 13: Validation of conflicts between real-world plugins

$.name1
if ($.name1) var tempName1 = $.name1;
$.name1 = function(){ tempName1.call(arguments) }

Figure 14: Correct enveloping of the method name

var a = xyz,
b = efg;
c = hij,

var c is declared as global because the previous statement ended
with ";".

Figure 15: Wrong coding practices may alter the declaration of
local variable name to global name

a group of 40 plugins, which we statically detected to have 20 con-
flicts. While the false negative is more challenging because we need
to have proved conflicts and validate them. It might be possible to
calculate the false positives and negatives by analysing and detecting
the patterns them but some of the cases have single patterns in our
test set.

As future work, we plan to use mutational testing approach to
generate test cases of plugin conflicts. Mutational operators would
be drawn from the patterns of conflicts we identified. Using this ap-
proach, we can automatically and quantitatively validate our results
by computing precision and recall.

5 RELATED WORK
Recent researches examine possible interactions in web applications
and explain how to detect such conflicts, especially if the detection
analyzes client and server side code.

Schuster et al. [12] focus on structural interactions and investigate
structural feature interaction patterns. They propose an approach to
detect design patterns in feature-oriented SPLs (Software Product
Line). The debate that the occurrence of such patterns from a feature
viewpoint shows how features interact to understand higher-level
concepts, they applied an algorithm to find a relation of the design

pattern concerning feature interaction. Machado et al. [13] present
an Eclipse plugin FeatureJS to enable mapping between domain
and implementation level features. With the use of the open-source
platform for feature-oriented programming known as FeatureIDE,
they provide automated support to SPL development in JavaScript
and HTML. The contribution was mainly to expand the abilities of
FeatureIDE to enable or disable the selection of a particular feature,
and to detect their functionality and the features it contains.

For JavaScript Analysis, Eshkavari et al. [5] detect plugin inter-
ference in WordPress by instrumenting PHP code. This work has
motivated us to do something similar for JavaScript and jQuery
plugins. Patra et al. [14], although this work is similar to our work,
it covers JavaScript libraries and focuses only on pairwise library
conflicts, while we target jQuery plugins and can include two plugins
or more at a time. It investigates the occurrence of global variable
names in different JavaScript libraries, while we examine both global
variables and jQuery objects names. Rostami et al. [15], introduce an
Eclipse plugin to detect class emulations and function constructors
in JavaScript programs, which is one pattern of a list of patterns we
are covering in our approach. Hanam et al. [16], propose another
approach to capture duplicate function names using static analysis.
Maras et al. [17], present Firecrow, a plugin added to the browser,
this work applies to the stand-alone application, it analyzes live
pages loaded into the browser but not files in a folder, it doesn’t
do an in-depth analysis on JavaScript code as we do. Frad et al.
[18], they intercept JavaScript code to find if the code following
proper programming syntax. Our approach is quite similar but with
a different scope.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we highlight the possible feature interaction problem
that can occur when combining two or more jQuery plugins on one
page. We identify the conflicts, mainly caused by duplicate names
of global variables and jQuery objects. We explain how they might
occur, possible detection mechanisms, and validation methods. We

CASCON ’19, Nov 04–06, 2019, Toronto, ON Omar A. Al Harthi, Manar H. Alalfi, and Thomas Dean

1.$.fn[var1][var2]
2. eval('$.fn.extend({ name: ... })')
3. Global names assigned to the window object.

w = (function(){ return window })(); or
w = window;

4. Global object passed as argument or variable,
(function(obj1, obj2){})

Figure 16: Examples of patterns to be analyzed dynamically

propose using static analysis as part of a broader framework to detect
potential conflicts in jQuery plugins. Our initial results show that
static analysis can identify some of the existing conflicts, however,
there are also some cases that cannot be detected by static analysis
alone and are the subject of future work. Two examples are the use
of array syntax with variables to access properties, and code that is
stored as a string and parsed at run time. We plan to annotate these
cases with a probe function and extract the targeted names during
run time.

Fig. 16, shows examples of patterns that can be detected statically
but require dynamic analysis to capture and extract the values of the
computed objects and properties:

We also plan to apply the same approach for other JavaScript
libraries such as Dojo and MooTools, and propose an automatic
mitigation approach for duplicate names if applicable. This work
will help to understand such conflicts and facilitate proper mitigation
in the future.

REFERENCES
1. T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J. Lin. The feature

interaction problem in telecommunications systems. In Proceedings of the Int. Conf.
on Software Engineering for Telecommunication Switching Systems (SETSS), pages
59-62. IEEE, 1989.

2. Calder, Muffy, et al. Feature interaction: a critical review and considered forecast.
Computer Networks 41.1 (2003).

3. Andreasen, Esben, and Anders Moller. Determinacy in static analysis for jQuery.
ACM SIGPLAN Notices. ACM, 2014.

4. Eshkevari, L. Antoniol, G. Cordy, J. R., di Penta, M.Identifying and locating inter-
ference issues in Content Management Systems.

5. Maras, Josip, Jan Carlson, and Ivica Crnkovic. Towards automatic client-side feature
reuse. Int. Conf. on Web Information Systems Engineering, 2013.

6. A. Osmani, Learning JavaScript Design Patterns - a JavaScript and jQuery Devel-
oper’s Guide. O’Reilly Media, 2012.

7. David Calhoun, Different Ways of Defining Functions in JavaScript. Jun 24th, 2011.
8. http://davidbcalhoun.com/2011/different-ways-of-defining-functions-in-javascript-

this-is-madness, Retrieved: September 2016.

9. https://forum.jquery.com/topic/rename-the-function-of-a-jquery-plugin-to-avoid-
duplicate-function

10. https://stackoverflow.com/questions/11898992/conflict-between-two-jquery-
plugins-with-same-function-name

11. https://www.techcartnow.com/how-to-use-jquery-plugins-with-conflicting-names-
on-the-same-page-in-asp-net-mvc-web-application/

12. Schuster, Sven, Sandro Schulze, and Ina Schaefer. "Structural feature interaction
patterns: case studies and guidelines." Proceedings of the Eighth Int. Workshop on
Variability Modelling of Software-Intensive Systems. ACM, 2014.

13. Machado, Ivan do Carmo, et al. "Low-level variability support for web-based
software product lines." Proceedings of the Eighth Int. Workshop on Variability
Modelling of Software-Intensive Systems. ACM, 2014.

14. Patra, J., Dixit, P. N., Pradel, M. (2018). ConflictJS: Finding and Understanding
Conflicts Between JavaScript Libraries.

15. Rostami, S., Eshkevari, L., Mazinanian, D., Tsantalis, N. Detecting function con-
structors in JavaScript. In Software Maintenance and Evolution (ICSME),(pp. 488-
492). IEEE.

16. Hanam, Q. Brito, F. S. D. M., Mesbah, A. Discovering bug patterns in javascript.
In Proceedings of the 2016 24th ACM SIGSOFT Int. Symposium on Foundations of
Software Engineering (pp. 144-156). ACM.

17. Maras, Josip, Maja Stula, and Jan Carlson. "Firecrow: a tool for web application
analysis and reus." Proceedings of the 29th ACM/IEEE int. conference on Automated
software engineering. ACM, 2014.

18. Fard, Amin Milani, and Ali Mesbah. "Jsnose: Detecting javascript code smells."
Source Code Analysis and Manipulation (SCAM) IEEE 13th Int. Working Conf. on.
IEEE, 2013.

19. Standard built-in objects. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global-Objects/Object/ , Retrieved: May 2018.

20. A. La. Language trends on github. [Online]. Available: https:
//github.com/blog/2047-language-trends-on-github

21. Stack Overflow - Where Developers Learn, Share, and Build Careers. [Online].
Available:https://stackoverflow.com/

22. Stack Exchange: Hot Questions. [Online]. Available:https://stackexchange.com/
23. The world’s leading software development platform Âů GitHub. [Online]. Avail-

able:https://github.com/
24. GitHub - acornjs/acorn: A small, fast, JavaScript-based JavaScript parser. [On-

line].Available:https://github.com/acornjs/acorn
25. JSFiddle: Create a new fiddle.[Online].Available: https://jsfiddle.net/
26. stackoverflow - Jquery plugins interfering with each other

[Online].Available:https://stackoverflow.com/questions/16345921/jquery-plugins-
interfering-with-each-other

27. stackoverflow - Conflict between two jquery plugins (dragscrollable and
scrollto) [Online].Available:https://stackoverflow.com/questions/5619420/conflict-
between-two-jquery-plugins-dragscrollable-and-scrollto

28. JavaScript, Standard ECMA-262, ECMAScriptÂő 2018
Language Specification [Online].Available:https://www.ecma-
international.org/publications/standards/Ecma-262.htm

29. NodsJs, A JavaScript runtime built on Chrome’s V8 JavaScript engine. [On-
line].Available:https://nodejs.org/en/

	Abstract
	1 Introduction
	2 Background
	2.1 The Issue with JavaScript

	3 Approach
	3.1 Classification of Conflicts
	3.2 New Patterns
	3.3 Challenges
	3.4 Static Analysis

	4 Results and Discussion
	4.1 Validation
	4.2 False Positives
	4.3 False Negatives
	4.4 Threat to Validity

	5 Related Work
	6 Conclusions and Future Work

