
A Semi-automated Framework for Migrating Web applications
from SQL to Document Oriented NoSQL Database

Rahma S. Al Mahruqi
Queen’s University
Kingston, Canada
13rsha@queensu.ca

Manar H. Alalfi
Ryerson University
Toronto, Canada

manar.alalfi@ryerson.ca

Thomas R. Dean
Queen’s University
Kingston, Canada

tom.dean@queensu.ca

ABSTRACT
Non-relational databases, such as NoSQL, play a major role en-
abling web applications to manipulate flexible data. Non-relational
databases have different strengths from relational databases and
are optimized to scale dynamic data such as that used by posts by
users in social media, producing terabytes of data. As businesses
scale, they need to migrate legacy relational applications to use
NoSQL techniques. There are two parts to the migration: the migra-
tion of the schema and data, and the migration of the application
source code. In this paper, we present a semi-automated approach
to solve the second part. We migrate and optimize the embedded
SQL queries to interact with the new database API and change the
application code to use the new queries.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software design tradeoffs; Automatic programming.

KEYWORDS
NoSQL, Application Migration, SQL, MongoDB

ACM Reference Format:
Rahma S. Al Mahruqi, Manar H. Alalfi, and Thomas R. Dean. 2019. A
Semi-automated Framework for Migrating Web applications from SQL
to Document Oriented NoSQL Database. In CASCON ’19: 29th Annual
International Conference on Computer Science and Software Engineering,
Nov 04–05, 2019, Toronto, ON . ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Many web applications start out small, and typically use relational
databases such as MySQL [33], even for unstructured data such
as user comments and user posts. Once the applications become
popular, they may scale to a size in which relational databases
impact the performance of the application. In recent years, more
attention has been credited to the NoSQL data stores that were
developed to address the issues identified through the emerging
Web 2.0 data landscape and cloud technology, namely, the need for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CASCON ’19, Nov 04–06, 2019, Toronto, ON
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

storage solutions to support higher availability and greater scale-
ability. As a point of clarification, the class of NoSQL databases
typically refers to the non-relational storage of the data rather
than the lack of the SQL query language [26]. Migration of the
underlying database technology for these mature applications can
be difficult. There are two parts to this process. The first part is
the migration of the database itself which includes formulating the
decision of which parts of the database to migrate, the design of
the new NoSQL database and the migration of the data. The second
part to change to the application to use the new NoSQL documents.
Considerable research already exists for schema and data migration
[9]. The migration of the code has largely been left for manual
migration efforts. This has become a motivating factor to examine
how difficult and laborious it is to move an existing, regularly used
application, based on the relational environment to a non-relational
data structure. The difficulty of carrying out a database migration
process, the scope of changes, which would have to be done in
the existing source code and the efficiency of an application while
using new data structure, will be considered in our work.

In this paper, we propose a semi-automated approach to migrate
a highly dynamic web application that uses a relational database
such as MySQL to one that uses both a relational and a document
oriented NoSQL database such as MongoDB. MongoDB is known for
its easy and quick setup and its features such as high-performance,
high availability, automatic scaling, and the ability to support fast
iterations [17]. There are two parts to this approach: the migration
of schema and data, and the migration of the actual application code.
Our approach provides contributions to the second part, migrating
and optimising the embedded SQL queries to interact with the new
NoSQL database system and changing the application code to use
the translated queries. The contributions of this paper are:

• A framework for the automated migration of relational data-
base web applications to a mixture of relational and docu-
ment oriented NoSQL applications.

• A semi-automated tool that realizes the proposed framework.
• An experiment that evaluates our framework and tool on
production web applications of various sizes.

Section 2 describe our approach and contributions in more detail.

2 APPROACH
Fig.1 shows the overall structure of our approach. It is composed
of four stages. The first stage deals with the migration of the
schema. Not all data in a web application should be stored in NoSQL
databases. Structured data such as users, administrators, roles and
access control should remain in a relational database. Data that
is very dynamic in nature such as the time-line in Facebook, user
posts in bulletin board systems, or user posts in an application such

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CASCON ’19, Nov 04–06, 2019, Toronto, ON Rahma S. Al Mahruqi, Manar H. Alalfi, and Thomas R. Dean

Schema
migration

Data
Migration

Query optimization
and Migration

Code
Adaptation

MySQL
Schema

NoSQL
Schema

Migrated
Web Application

MySQL
Schema

Web Application

Figure 1: Proposed Migration Approach

as Twitter are the type of data that should be migrated to a NoSQL
database. This stage identifies the part of the database schema that
should be migrated and creates the MongoDB NoSQL data model.

The second stage migrates the data in the tables that were iden-
tified in the first stage to the newly created NoSQL database.

The third stage of the approach uses a combination of backward
slicing [32] and the technique used by Alalfi et al[3] to extract the
set of SQL statements executed by the application. Those queries
that involve tables that were migrated in the first stage are trans-
lated. One key component of this translation is query optimization.
Existing SQL database engines have built in query planners that
optimize the order of operations in complex queries. Most NoSQL
databases require the application programmer to specify the order
of operations. A naive translation of the SQL query may result in
sub-optimal queries. While the queries may be optimized manually,
applying some database query optimization techniques during the
translation may result in better NoSQL queries.

The last stage of our approach is to use the migrated queries as
a template to modify the code of the web application to generate
the modified queries. This involves a backwards slice to identify
the statements that assemble each of the SQL statements migrated
in the third stage. These statements are migrated to generate the
appropriate NoSQL query. The main contribution of this paper is
the migration of the application code, which is composed of the
last two stages.

To test and validate our approach, we collected three applica-
tions to migrate to NoSQL. These were a small application SCARF
(15.5 Mb) [27] and two intermediate applications PHPBB v2 and v3
(221.1 Mb, 1362.6 Mb respectively [22]. The smallest application
allows us to explore migration strategies, while the intermediate
applications allow us to evaluate in a larger context. We chose the
application based on this type pf transformation from SQL to docu-
ment oriented NoSQL that suites this type of applications; bulletin
boards and forums systems, and content management systems that
require horizontal scaling of thousands of nodes as demanded when
handling huge collections on structured and unstructured data sets.
Also, all the applications under test are PHP based application.
Applications were first installed and exercised to generate initial
test data to be migrated. SCARF is a conference paper submission

and organization web application. We created 10 users, submitted
25 papers and 67 posts. PHPBB2 and PHPBB3 are bulletin board
applications that allow users to post comments about a variety of
topics. For PHPBB2, we created 47 users, 815 topics and made 1017
posts to populate the data-set. For PHPBB3, we created 10333 users,
23931 topics and 28174 posts.

We now examine each of the steps in more detail.

3 SCHEMA AND DATA MIGRATION
The structure of the relational databases is usually more complex
than NoSQL, due to the normalization process in which data is split
into multiple related tables [12]. In contrast, NoSQL databases store
data in a de-normalized unstructured or semi-structured way. Thus,
the transformation from relational databases to the NoSQL ones is
not straight forward. NoSQL does not have an explicit JOIN opera-
tions as if the table to be migrated is involved in a join relationship
with another table, either both tables must be migrated to a single
NoSQL collection, or the code for the NoSQL equivalent of a join
must be included in the application.

In the relational model, the data is stored in tables where at-
tributes represent forum, posts, users and topics information and
rows represent posts and users IDs as example of PHPBB application.
In the document model, the data transformed into JavaScript Object
Notation syntax (JSON) files.

As part of the first two stages of application migration, we evalu-
ated two published approaches for migrating the database schemes
to MongoDB. Arora et al. [4] transform a relational database into a
MongoDB document database. They propose an interface to design
the database schema from MySQL to MongoDB and then applying
Pentaho Data Integration (PDI) tool [6] to migrate the data. The
algorithm applies data transformations (embedding documents)
and generate the NoSQL structure design. Jia et al. [12] model the
NoSQL database, MongoDB, with relational algebra. They propose
an approach to do model transformation, and they present their
tool that aids in the design of the new data structure. Their ap-
proach is similar to [4], but they give some guidelines to choose
when to embed documents. Their model transformation algorithm

A Semi-automated Framework for Migrating Web applications from SQL to Document Oriented NoSQL Database CASCON ’19, Nov 04–06, 2019, Toronto, ON

only optimizes specific tables instead of the entire database of the
relational database to avoid data redundancy.

In these approaches, developers extract an Entity Relationship
(ER) model from the existing relational database. If developers are
not satisfied with the result of model transformation, they can
modify the result of model transformation, such as removing some
collections, forcing documents to be embedded, or removing some
fields.

Since implementations of the two schema migration approaches
were not publicly available, we reproduced their algorithms in Java.
We then tested our implementation on the migration of the schemas
for SCARF, PHPBB2 and PHPBB3 . Our implementation connects to
the source database to obtain the schema: the names of the tables,
their attributes and relationships. The information on the relation-
ships can be retrieved using the primary constraint and foreign
keys for each table. Our implementation provides an interface that
allows the user to select the starting tables and columns and, using
information about the NoSQL target database server, and the algo-
rithms described in the previous research, generates the text files
used as input for the data migration tools.

An effective data models support the application needs, and the
key consideration for the structure of the documents is the decision
to either embed or to use references. Embedded data models allow
applications to store related pieces of information in the same data-
base record [14]. As a result, applications may need to issue fewer
queries and updates to complete common operations. In our schema
design, we apply embedding for the one-to-many relationships as
an array of sub-documents. In these relationships themany or child
documents always appear with or are viewed in the context of the
one or parent documents. We apply reference documents by their
_id value to represent more complex many-to-many relationships.

We used the Pentaho data integration tool (PDI) [6], an open
source data integration tool to migrate the data in our sample
applications. The tool has the flexibility to either embed the related
tables toMongoDB collections automatically or to allow the user to
select the columns for joins. We successfully applied Pentaho tool
to migrate the data residing in the MySQL database of the three
applications under test to the generated MongoDB schema using
the parameters generated by our tool.

We converted 7 tables out of 7 MySQL tables to MongoDB in
the SCARF application. In PHPBB2, 26 tables out of 30 tables were
converted and in PHPBB3 64 tables out of 70 tables were converted
to MongoDB. The result was two independent installations of each
test system. One with onlyMySQL, the other with bothMySQL and
MongoDB. The data verification shows that data migration process
from MySQL relational database to MongoDB NoSQL database was
performed successfully by applying the proposed methodology and
the data migration tool. MongoDB also performs all of the basic
operations like INSERT, UPDATE, DELETE and SELECT, which are
identical to MySQL.

4 QUERY MIGRATION AND OPTIMIZATION
There are two steps to the query migration process in our approach.
The first step is to inventory the queries made by the application.
The second step is to migrate each of the queries. The first step
extracts the queries and classifies them based on the use of tables

from the schema. Our migration is implemented using source trans-
formation in TXL [8]. We use a MySQL grammar adapted from
SQL2XMI [1], our own MongoDB API grammar, and the official
PHP grammar from the TXL website[31].

4.0.1 Query Extraction. The first phase in the query migration
process is the query extraction phase. We start by extracting the
queries from the the web application by instrumenting calls to the
mysql_query function. The final computed string that is passed to
this call is logged along the location (file and line) of the call. This
provides an inventory of all the queries executed by the application.

4.0.2 Query Classification and Migration. We classify the extracted
SQL statements into four categories. The first category(Unchanged)
are SQL queries that only use tables that are not part of themigration
process and remain in the relational database. An example might
be the table that identifies users and their account preferences.
These queries are obviously left alone. The Second category of
queries (Single) are queries that involve only a single table that has
been migrated to MongoDB. This represent a simple translation
from the SQL to the equivalent API for MongoDB. The third set
of queries(Double) are queries that involve more than one table,
all of which have been migrated in the previous stage. These SQL
queries are also migrated from SQL to the equivalent for MongoDB,
but are more complex than a single table. The last class of queries
(Dual) are queries that include both relational and MongoDB tables.
This is the most complex migration as it requires a combination
of SQL and the MongoDB API. The classification process allows us
to apply different migration rules. This allows us to have specific
migration rules for queries with all tables non migrated (classified
as Unchanged), and queries with a mixture of migrated and non-
migrated tables (Dual). Fig.2 illustrates our query classification and
translation process.

A single program is used to read a list of tables that has been
migrated and process each of the extracted SQL queries in turn.
Separate translation rules were written for each case. We started
with direct naive translations, drawn from the SQL to MongoDB
mapping table on the PHP website [21]. For example, the following
SQL select pattern, matches columns tables, where, order and limit
elements of a SELECT statement. The following pattern example
about SELECT with a single table and selecting a list of columns
are translated to MongoDB find operation. If there is an ORDER
BY clause, a sort() call is added to the find action and the pattern
supports limit clause.

SQL Statement
pattern:

SELECT

[list select_Expr1]

FROM [table_references]

[opt whereClause]

[opt orderbyClause]

[opt limitClause]

An example of the type of translation from SCARF application
is shown below. We show the original SQL statement in a PHP
comment and the equivalent MongoDB action.

SQL Statement and translated MongoDB action
// SELECT * FROM users WHERE email = '$email'

db.users.find({email : $email});

CASCON ’19, Nov 04–06, 2019, Toronto, ON Rahma S. Al Mahruqi, Manar H. Alalfi, and Thomas R. Dean

Extracted
SQL

Statements

Classify

Unchanged

Single

Double

Dual

Translate
Single

Translate
Double

Translate
Dual

MongoDB

MongoDB

MongoDB
& SQL

Optimize
Single

Optimize
Double

Optimize
Dual

MongoDB

MongoDB

MongoDB
& SQL

Figure 2: Query Migration Process

This is the simplest case of a select all with a simple where
clause. It is turned into a find operation with the search fields as
the parameter.

The following query from the SCARF application is an example
of one that is not changed. The tables authors and users in the
SCARF application are not sufficiently dynamic to benefit from the
use of MongoDB.

SQL Statement
SELECT firstname, lastname

FROM authors LEFT

JOIN users USING (user_id)

WHERE paper_id = '$row2[paper_id]';

The translation applies a different set of rules for each category
of query. The migrated statements are then stored in a mapped
directory. Output for statements without mapping is stored in the
unchanged directory. If the statement is migrated, the output will
be the original SQL statement followed by the result MongoDB
operation.

SQL Statement
SELECT p.post_id FROM phpbb_posts p

WHERE p.poster_id = $param1 AND p.post_visibility = $param2

ORDER BY p.post_time DESC L

LIMIT $param3"$

MongoDB translated Statement
db.phpbb_posts.find({poster_id : $param1, post_visibility : $param2}).sort({

post_time:-1}).limit($param3);$

This example illustrates a single table with select, where, order
and limit clauses.

Our current implementation covers the SQL language includ-
ing SELECT, INSERT, UPDATE, DELETE, and CREATE TABLE
statements. There are some complex cases involving built in SQL
functions which are not fully covered, however the cases in the
MongoDB mapping table on the PHP website [21] are covered, as
are the special cases found in our test applications.

From a total of 1098 queries, the classifications process of PH-
PBB3 gives us the following categorized queries: 80 unchanged
queries, 968 single, 63 dual, and 74 double queries. SCARF: 64 single
and 22 double queries. For PHPBB2: 254 single queries, 29 dou-
ble queries, 36 dual queries and 72 unchanged queries stayed in
MySQL database. Table. 1 shows the migration statistics of the three
applications.

Some queries specify an order to the results using computed
values. The MongoDB find operation can only sort by fields, not by
computed value, resulting in a different order. To produce the same
order as the original SQL statement, we translate the SQL statement
to aMongoDB aggregation action. This creates a new computed field
which can be used for sorting as shown in the following example:

A Semi-automated Framework for Migrating Web applications from SQL to Document Oriented NoSQL Database CASCON ’19, Nov 04–06, 2019, Toronto, ON

SQL Statement
SELECT t.topic_id FROM (phpbb_topics t)

WHERE t.topic_last_post_time >= $param4

ORDER BY t.topic_type DESC, LOWER (t.topic_title) ASC LIMIT $param5

MongoDB Translated Statement
db.phpbb_topics.aggregate([{"$match" : {topic_last_post_time : {$gte : $param4

}}}, $projection : {topic_id : 1,computed1 : {$toLower "$topic_title"}}},

{"$sort" : {topic_type : -1, computed1 : 1}},

{"$limit" : $param5}]);$

The aggregate function Lower is implemented in the result by the
new field computed1 which is computed using the built in function
$toLower. The field computed1 is used in the sort clause of the
translated MongoDB statement.

Some queries (involve to migrated tables) have multiple aggre-
gation functions (e.g. max, min, count) as shown in the following
example from PHPBB3 :

SQL Statement
SELECT MAX(post_id) AS last_post, MIN(post_id) AS first_post, COUNT(post_id) AS

total_posts FROM phpbb_posts WHERE topic_id = id

This statement will be translated using migrate select aggregation
rule to generate aMongoDB aggregation pipeline with the aggregate
functions.

MongoDB translated Statement
db.phpbb_posts.aggregate([{$projection : {post_id : 1, post_id : 1, post_id :

1}}, {"$match" : {topic_id : $id}}, {"$group" : {"_id" : null,

total_posts : {"$sum" : {"$cond" : [{"$ifNull" : ["$post_id", false]}, 1,

0]}}, first_post : {"$min" : "$post_id"}, last_post : {"$max" : "$

post_id"}}

The min and max are implemented as simple functions at the end
of the pipeline. The count aggregation is implemented as a combi-
nation of the functions $sum, $cond and $ifNull.

Some double queries have a join that is not a simple field equality
such as the following SQL statement:

SQL Statement
SELECT t.topic_id

FROM phpbb_topics t, phpbb_topics t2

WHERE t2.topic_id = $topic_id AND t.forum_id = t2.forum_id

AND t.topic_moved_id = 0 AND t.topic_last_post_id > t2.topic_last_post_id

ORDER BY t.topic_last_post_id ASC LIMIT 1$

In this example, the join filter includes an inequality to sort
topics by the id of the last post in the topic. The lookup operator in
MongoDB can only join two collections with a single field equality.
So the result has to be implemented as two MongoDB statements,
one for each of the field equality operators This statement has been
migrated to two MongoDB actions, one for each collection.

MongoDB translated Statement
db.phpbb_topics.find({topic_moved_id : 0});

db.phpbb_topics.find({"t.topic_id" : $topic_id, forum_id : {$in : $list_forum_id

}});$

PHPBB3 also uses array elements in select statements as in the
following example:

SQL Statement
SELECT * FROM phpbb_forums WHERE id = $row[id]

SQL statements are also used in other constructions such as object
properties:

SQL Statement
SELECT * FROM phpbb_forums WHERE parent_id = $this->parent_id

Dual queries are SQL sentences that use some tables migrated
to MongoDB with other tables that have not been migrated. They
request data from two unconnected databases. So, there is one oper-
ation done inMySQL, and another inMongoDB to get all data for the
join. Since the databases cannot merge this data, it has to be merged
in the application code. For example, in includes/functions_users.php,
there is this query definition:

Dual query definition
SELECT r.post_id, p.topic_id

FROM ' . REPORTS_TABLE . ' r, ' . POSTS_TABLE . ' p

WHERE ' . $db->sql_in_set('r.user_id', $user_ids) .'

AND p.post_id = r.post_id'

Which joins table REPORTS (not migrated) with POSTS table (mi-
grated). It is transformed to this:

PHP code of Dual query
"\$res=\$_sql('SELECT * FROM phpbb_reports'); \$rows=array();while(\$row=

mysql_fetch_assoc(\$res))\$rows[]=\$row;

\$rows0=\$rows;

\$list_post_id=array_column(\$rows0,'post_id');foreach(\$list_post_id as &\$a){\

$a=(int)\$a;};

\$rows=\$db->phpbb_posts->find([post_id => ['\$in' => \$list_post_id]]);

\$rows=\$s2m->join_external(\$rows0,'post_id',\$rows,'post_id',true); \$cols=[\"

post_id\",\"topic_id\"]; \$proj=[];"

This automatically generated php code does a query with SQL to
get data from REPORTS table, and then a MongoDB call to get POST
information for these records, and lastly it merges information from
two databases with join_external.

Our naive approach is able to generate MongoDB actions for the
SQL queries from our test applications which we tested against the
migrated tables in our experimental installations of the applications.
The MongoDB actions produced the same results as the original
SQL queries. However, the performance of the naive translation
is an issue. These performance results will be shown in the next
section.

4.0.3 Query Optimization: There are many factors that can affect
database performance and query execution time including the use of
indexes, query structure, data models and schema design. Applying
some of the database query optimization techniques like creating
indexes and changing table order during the translation can result
in better performance.

MongoDB supports pipeline optimization where the developer
can specify the order of operations. One clear optimization is to
place the match filter as early in the aggregation pipeline as possible
[18]. Because the filter limits the total number of documents in the
aggregation pipeline, it minimizes the amount of processing later
in the pipe. As such, in this step, we move all match conditions
to as early in the pipeline as as possible. For example in the naive
approach, the match is later in the pipeline:

SQL Statement
SELECT DISTINCT p.post_id FROM phpbb_posts p, phpbb_topics t WHERE p.poster_id =

$param1 AND (p.post_visibility = $param2 OR p.forum_id IN $list) AND t.

topic_id = p.topic_id GROUP BY t.topic_id, t.topic_last_post_time ORDER

BY t.topic_last_post_time DESC$

In the optimized version the match is at the beginning of the
pipeline as shown:

CASCON ’19, Nov 04–06, 2019, Toronto, ON Rahma S. Al Mahruqi, Manar H. Alalfi, and Thomas R. Dean

MongoDB optimized Statement
db.phpbb_posts.aggregate([{@"$match"@ : {$and : [{poster_id : $param1}, {$or :

[{post_visibility : $param2}, {forum_id : {$in : $list}}]}]}}, {"$lookup"

: {"from" : "phpbb_topics", "localField" : "topic_id", "foreignField" :

"topic_id", "as" : "t"}}, {"$unwind" : {"path" : "$t", "

preserveNullAndEmptyArrays" : false}}, {"$project" : {"post_id" : 1, "t.

topic_last_post_time" : 1}}, {"$sort" : {"t.topic_last_post_time" : -1}},

{"$group" : {"_id" : {topic_id : "$t.topic_id", topic_last_post_time : "

$t.topic_last_post_time"}}}, {"$group" : {"_id" : {post_id : "$post_id"

}}}])$

In the above example, there are two collections, phpbb_posts and
phpbb_topics. The query is implemented as an aggregate pipeline
on phpbb_posts. The collection phpbb_posts is the main collection
of the query. A double table query where the main collection is
filtered is more likely to be faster. So, if the main collection of the
query is unfiltered, changing the order of the collections so that the
main collection with a filtered collection may be faster. However,
it will not be always the case, for example, a main collection can
be unfiltered but has fewer documents than the result of filtering
the other collection. For example, we have a table with posts and
another with topics. Each post has a field with its topic id.

SQL Statement
SELECT phpbb_topics.topic_title

FROM phpbb_topics, phpbb_posts

WHERE phpbb_posts.post_id = 1

AND phpbb_posts.topic_id = phpbb_topics.topic_id

If we run a query to retrieve the topic title for the post id = 1, SQL
database query planner chooses what table is best to read first, but
MongoDB does not. Without the table order optimization program,
MongoDB query looks first the topic table. It has to read ALL topics
and ALL their posts. Then, it will discard all posts and retrieve the
post with id = 1 only. With the optimization, the post table would
be used first because it is filtered. MongoDB will have to read only
one post, searching by its id and for that post it will read only its
topic.

Based on recommendations of the NoSQL community[18], our
optimization process will change the table order in the join chain.
The first tables in the operation are tables that are filtered by their
key fields. Next are tables filtered by non-key fields, and finally
tables with no filters. The program will produce only oneMongoDB
output for each double SQL query. This querywill use the table order
with the highest score. In most cases, the optimization program
produces a query with the lowest query execution time. Here is an
example of an SQL query and its equivalent optimized MongoDB
action:

SQL Statement
SELECT COUNT (p.post_id) AS total FROM phpbb_posts p, phpbb_topics t WHERE p.

forum_id IN $list AND p.post_visibility = $param1 AND t.topic_id = p.

topic_id AND t.topic_visibility <> p.post_visibility

MongoDB optimized Statement
db.phpbb_posts.aggregate([{"$match" : {$and : [{forum_id : {$in : $list}}, {

post_visibility : $param1}]}}, {"$lookup" : {"from" : "phpbb_topics", "

localField" : "topic_id", "foreignField" : "topic_id", "as" : "t"}}, {"$

unwind" : {"path" : "$t", "preserveNullAndEmptyArrays" : false}}, {"$

project" : {"post_id" : 1, computed1 : {$ne : ["$t.topic_visibility", "$

post_visibility"]}}}, {"$match" : {computed1 : true}}, {"$group" : {"_id"

: null, total : {"$sum" : {"$cond" : [{"$ifNull" : ["$post_id", false]},

1, 0]}}}}])

4.1 Query Optimization Analysis
We evaluate the impact of our query optimizations on the per-
formance of the migrated queries using the test data migrated in
section 3. The evaluation was conducted on an Ubuntu 14.04.4
server, with MySQL 5.5.47 and MongoDB 3.2.10, with the following
collections from our PHPBB3 database test set: 28174 posts , 23931
topics and 10333 users. Queries that were measured are the SELECT
queries that were classified as SINGLE or DOUBLE and migrated
to MongoDB. Tests were run on both the MySQL and MongoDB
systems using the same data sets. One test was done on the original
non-optimized queries and the other with the optimized queries,
and the time is recorded in seconds.

Fig. 3 shows a comparison between the execution time of the
non-optimized migrated MongoDB queries (green),the execution
time of the optimized migrated MongoDB (red), and the original
SQL queries (blue). For example the un-optomized execution time
for query 1 is over 5 seconds while the optimized and original SQL
execution times were a small fraction of a single second. We can
observe that the optimization stage of our approach did drastically
improved the performance of the migrated MongoDB queries to a
level that is comparable to the performance of the SQL queries. The
lower graph in Fig. 3 shows a closer look at the two bottom lines
in the upper graph. The larges difference is in query 6 which the
optimized MongoDB is 0.1 sec vs a very small SQL execution time.

Since the test size of the test collections are still relatively small,
the advantage of MongoDB for these types of collections is not
immediately obvious. However, it is clear that our approach does
not introduce a significant performance penalty while enabling the
use of MongoDB.

5 WEB APPLICATION MIGRATION
The last stage of our approach is altering the application to use the
translated queries. This process is the converse to the SQL queries
extraction stage. We apply a backward slice combined with the
approach used by Alalfi et al. [2].

We modify a backwards slice to do markup instead of removing
statements. We start from the location where each of the migrated
SQL statements is executed (a call to the function mysql_select).
This is the function used to launch SQL queries in SCARF and both
PHPBB versions. The SQL statement may be a literal string, in
which case the migration is done at the site of the call. Otherwise,
we move backwards from the execution of the SQL statement in the
program tracking the construction of the string literal that contains
the SQL statement.

While it is possible to build up a PHP data structures and lambda
functions[21] to execute the equivalent MongoDB action, we have
chosen an intermediate transform to start. We construct the Mon-
goDB query in a string literal the same way the SQL query is con-
structed. We transform each PHP statement that adds a component
to the SQL stringlit to add a transformed component to the Mon-
goDB stringlit. The resulting string contains MongoDB actions in
PHP code that is then executed using the eval function.

Our first example is a simple SQL SELECT statement that re-
trieves the forum id for a specific topic. The result of the query is a
dictionary that has a single element ,’forum_id’.

A Semi-automated Framework for Migrating Web applications from SQL to Document Oriented NoSQL Database CASCON ’19, Nov 04–06, 2019, Toronto, ON

Figure 3: Query Optimization Analysis

Simple SQL SELECT statement in PHP
$sql = 'SELECT forum_id FROM ' . TOPICS_TABLE

. ' WHERE topic_id = ' . $topic_id;

$result = $db->sql_query($sql);

$forum_row = $db->sql_fetchrow($result);

$db->sql_freeresult($result);

if (!$forum_row)

{

trigger_error('NO_TOPIC');

}

In the PHPBB3 application, all calls to mysql_query are done
through the sql_query function provided by the driver. Using the

known values of the system constants in constants.php, the SQL
statement concatenation is translated to the equivalent MongoDB
find action. We then execute the MongoDB action:

Simple MongoDB find action in PHP
$sql = "\$rows = \$db->phpbb_topics->find(['topic_id'=> intval ($topic_id)],

['forum_id'= > 1]) ;\$cols=[\"forum_id\"];"

$result = db->sql_query($sql)

$forum_row = $db->sql_fetchrow($result);

$db->sql_freeresult($result);

if (!$forum_row){

trigger_error('NO_TOPIC');

}

CASCON ’19, Nov 04–06, 2019, Toronto, ON Rahma S. Al Mahruqi, Manar H. Alalfi, and Thomas R. Dean

Our migrated version of the sql_query function checks the query.
If the query is an un-migrated SQL query, the standard MySQL
function is called, and the result is returned as normal. If it s a
MongoDB action, then we evaluate the string and check the results:

Elided Migrated Version of sql_query
try {

...

$res = eval($out);

...

} catch (MongoException $e) {

... error handling ...

return null;

} catch (Throwable $t) {

... error handling ...

return null;

}

...

if (isset($rows)) {

$res = $rows;

}

Our approach also instruments calls to the rest of the MySQL
API. We have provide implementations of the MongoDB actions
that are similar to the semantics of the SQL operations to simplify
conversions, and modified versions of theMySQL API that work for
both the SQL and the MongoDB queries and results. This simplifies
the translation by allowing us to focus on the translation of the
query.

Next is an example of an UPDATE Statement.

SQL UPDATE statement in PHP
$sql = 'UPDATE ' . POSTS_TABLE . '

SET post_reported = 1

WHERE post_id = ' . $post_id;

$db->sql_query($sql);

This sets the post_reported field to 1 on the post identified by
$post_id. POST_TABLE is a PHP constant defined in constants.php. It
is used tomark a post as reported. Note that inMySQL, post_reported
is a boolean field, the value 1 is converted to TRUE. PHPBB does
not check the result of the query.

MongoDB update action in PHP
$sql = "\$db->phpbb_posts->update(['post_id' => intval ($post_id)],

['\$set' => ['post_reported' => boolval (1)]], [multi =>

1])";

$db->sql_query($sql);

As mentioned above this is an intermediate step. While simpler
constructions that use only constants and user input like the exam-
ple above can be optimized, SQL statements that are constructed
in pieces are not easily optimized. The main advantage of this ap-
proach is that it provides a transparent executable migration. The
MongoDB actions are directly visible in the application code. De-
velopers can manually tune the string construction based on the
optimized statements produced in the previous section and their
knowledge of the structure and semantics of their data. A second
stage of translation that translates the strings to direct PHP code is
also possible in the future.

5.0.1 ApplicationMigration Statistics . Wehavemigrated the SCARF
and both versions of PHPBB. In the case of SCARF , all queries were
successfully translated, and the application was manually tested
to ensure the migrated version had the same functionality. We
checked that the migrated application has the same output with an

equivalent database on all pages. The current implementation of
our approach does not fully migrate the two versions of PHPBB.
In PHPBB2 15% of queries are not fully migrated, and 25% of the
queries in PHPBB3 are not fully migrated. The missing parts are a
result of missing elements of the backwards markup and because of
the dynamic nature of the queries that could not get a complete sen-
tence by the static migration. Also the limitation of the backward
slicing is the query may not exist in the source code. Backwards
slicing is a well understood problem, and completion is a matter
of dealing with many language details of PHP. We finished the
migration of three PHPBB3 web pages manually. We only man-
ually migrated the untranslated queries and did not modify the
queries that were migrated automatically. This allowed us to test
the functionality of the automatically translated queries in these
pages (which were correctly executed). We log all SQL queries exe-
cuted in a PHPBB3 session, testing as many pages as possible by
instrumenting PHPBB3 to write all executed queries to a file. Then
going through all pages in the web browser with an anonymous
user, and with an identified user. With that we got a list of com-
plete PHPBB3 queries to test our procedures and to improve our
migration rules.

A total of 86 queries in SCARF are processed automatically, with
100% coverage. In PHPBB2, of a total of 460 queries, 391 processed
automatically, with (85%) coverage and in PHPBB3 with a total of
1572 queries, 1185 processed automatically with (75%) coverage.
Some examples of the more esoteric queries migrated from PHPBB3
pages are:

Migrated SQL Query to MongoDB of viewforum.php page
if (! $forum_id)

{ $sql = ((("

// SQL SELECT Statement

// \"SELECT forum_id FROM phpbb_topics WHERE topic_id = $topic_id\"

// Translated find MongoDB Action

\$rows=\$db->phpbb_topics->find(['topic_id' => intval ($topic_id)], ['forum_id'

=> 1]);

\$cols=[\"forum_id\"];

")));

track_strlit ($sql, "SELECT forum_id

FROM phpbb_topics

WHERE topic_id = $topic_id");

$result = $db -> sql_query ((($sql)));

track_call_local2 ('sql_query', $sql);

$forum_id = (int) $db -> sql_fetchfield ('forum_id');

$db -> sql_freeresult ($result);

An Example of migrating SQL Select toMongoDB aggregate func-
tion of the viewtopic.php page:

Migrated SQL Query to MongoDB aggregate function of
viewtopic.php page
// SQL Statement

"SELECT topic_last_post_id AS post_id, topic_id, forum_id

FROM phpbb_topics WHERE topic_id = $topic_id"

// Translated MongoDB Action

$rows=\$db->phpbb_topics->aggregate([['\$project' => ['post_id' => '\$

topic_last_post_id', 'topic_id' => 1,

'forum_id' => 1]], ['\$match' => ['topic_id'

=> intval ($topic_id)]]]);

$cols=[\"post_id\",\"topic_id\",\"forum_id\"]")));

6 RELATEDWORK
Existing tools and techniques target the problem of data and schema
migration without consideration to migrating the applications that

A Semi-automated Framework for Migrating Web applications from SQL to Document Oriented NoSQL Database CASCON ’19, Nov 04–06, 2019, Toronto, ON

Table 1: Experiment Results

Application Name PHP files Modified files Queries MigratedQueries Single Double Dual Not changed
SCARF 19 16 86 86 64 22 0 0
PHPBB2 71 49 460 391 254 29 36 72
PHPBB3 2906 1561 1572 1185 968 74 63 80

interacts with the data. For example, the ETL Extract-Transform-
Load tool implements the interface to some mainstream NoSQL
database systems to do data transformation, such as Cassandra,
MongoDB, andHBase [12]. However, ETL tools cannot automatically
map the existing database to the target database. ETL tools can only
complete the data migration process, requiring the user to design
their own mapping strategies between different databases. When
designing a data model for MongoDB, the key consideration is to
decide when to use embedding or references between different
documents [14]. This determines the structure of documents, the
performance and the data redundancy. Kanade et al. [14] discuss
the pros and cons of embedded data and references. Experiments
were performed to find the extent of normalization and embedding
to reduce query execution time of MongoDB.

Chung [7] and Li [15] propose two approaches to convert schema
from relational databases to HBase. Chung uses a JackHare Map-
Reduce framework that converts every table in a relational database
into a single HBase table. After the conversion, each table becomes
a column family in HBase. Li uses three guidelines to guide the
schema conversion where related tables will be nested as a whole
and transformed into a table in HBase. The three guidelines include
grouping correlated data in a column family, adding foreign key
references if one side needs to access the other side’s data, andmerg-
ing the attached data tables to reduce foreign keys. However, the
latter does not take multilevel nesting into consideration. Schram
[28] proposes an abstract layer that allows software applications to
access data in the NoSQL model transparently, without the need of
changing the existing queries in the applications.

Roijackers [25] creates an abstraction layer between SQL and
NoSQL databases. According to the authors, certain data sets show
better results when processed by relational databases, and others
are better running on NoSQL databases. Requests are analyzed to
determine which of the two models would be ideal for processing
each request. We adopt this approach to automate the process of
deciding which table to migrate to NoSQL and which one to keep
as relational.

Sellami et al. [29] develop PaaS,ODBAPI, a streamlined and REST-
based API in order to execute the CRUD operations, i.e., create, read,
update and delete, on SQL and NoSQL databases.

Ellison et al. [11] introduce a two-stage approach which accu-
rately estimates the migration cost, migration duration and cloud
running costs of relational databases. The first stage of the approach
obtains workload and structure models of the database to be mi-
grated from database logs and the database schema. The second
stage performs a discrete-event simulation using these models to
obtain the cost and duration estimates.

Serrano et al. [10] describe a methodology for migrating appli-
cations relying on relational databases to HBase back-ends. The au-
thors describe how to create the NoSQL tables for best performance,

and to query the database. The paper describes a methodology; it is
not an automated tool. To apply it, developers have to redesign the
database following the guidelines, and manually change all source
code that accesses the database.

Rocha et al. [24], propose a product to run MySQL applications
with a MongoDB database, using run-time query migration. This
is a proxy approach, where queries are migrated at run-time and
the original application source code remains untouched. The work
divided into two parts: First is a process to migrate all data from
SQL database to a NoSQL database. The second part is query map-
ping, where the SQL sentences are transformed toMongoDB actions.
They use a custom MySQL driver based on MySQL Proxy [20] that
intercepts the SQL queries at run-time. It communicates with a web
service developed in Java which uses JSQLParser" [13] to parse and
execute the queries. They use MongoDB operations implemented
in Java to execute the equivalent query components, using infor-
mation from the original SQL schema. The data recovered from
the MongoDB operations is transformed to MySQL format and re-
turned to the caller application. The work is similar to "MongoDB
Connector for BI product" [5], but it seems to support more use
cases. There are two products: one with very basic SQL support
that translates sentences directly to MongoDB, and the other that
manages a virtual database with better SQL support.

In our framework, we only migrate the dynamic document based
data to MongoDB using the Pentaho data migration tool. The SQL
quereies are migrated in the source code. After migration, the trans-
formed quereies can be further optimized by the developers that
have better understanding of the data and queries.

There are some industrial products and tools that help in migrat-
ing SQL queries to NoSQL ones. Unity driver product[19] uses JDBC,
which is an API used in Java to access databases, which is equiv-
alent to PHP Data Objects (PDO)[23]. These products are aimed
to use SQL applications with a MongoDB database and not to mi-
grate the applications. This makes sense commercially, since it can
be used also with applications where source code is not available.
Unity driver [19] shows MongoDB equivalences for SQL sentences,
which can be an aid to learn MongoDB, but it does it only for very
basic SQL sentences, other sentences are processed by its virtual
database.

Liao et al. [34] propose a product that allows an application to
use both SQL (MySQL) and NoSQL (HBase) databases at the same
time. It consists of two parts: a DB Converter to migrate data and
asynchronization process to maintain the databases. They use Sqoop
[30], a data converter, to transform bulk data between Relational
Database and NoSQL database. The application uses SQL to interact
with both databases. SQL commands are migrated to NoSQL at run-
time. It is a middle-ware using C# with ANTLR as an SQL parser
and SQL grammar based on Macroscope, a .NET library [16]. The
application has to be changed to use its interface, but it can use

CASCON ’19, Nov 04–06, 2019, Toronto, ON Rahma S. Al Mahruqi, Manar H. Alalfi, and Thomas R. Dean

SQL to access all databases. It uses the MySQL JDBC driver as an
RDB connector, and a SQL query parser and Apache Phoenix as a
SQL translator to connect HBase.

Our work is focusing on migrating and optimizing the embedded
SQL queries to interact with the new database system and changing
the application code to use the translated queries.

7 CONCLUSION AND FUTUREWORK
In this paper, we present an approach for semi-automating the
migration of highly dynamic relational-based (e.g. MySQL) web
applications to ones that use document oriented NoSQL databases
such as MongoDB. We demonstrate the approach on the migration
of subset of queries of the PHPBB3, a bulletin board web appli-
cation. The approach was tested on three applications, SCARF ,
PHPBB2, PHPBB3. The approach successfully migrated the appli-
cations into fully working systems which uses MongoDB NoSQL
databases and partially interacting with some non migrated SQL
tables. We conducted an experiment to evaluate our optimization
phase and the evaluation suggest that our optimization was in-
strumental in improving the performance of the migrated system
with a performance almost equivalent to the original non-migrated
application.

Since the test size of the test collections are still relatively small,
the advantage of MongoDB for these types of collections is not
immediately obvious. However, it is clear that our approach does
not introduce a significant performance penalty while enabling the
use of MongoDB.

We automate the extraction of the SQL statements by applying a
backward slicing and the approach suggested by Alalfi et al [3]. We
also provide an automated way to migrate the application source
code to use the translated queries. We are working on verifying
the generality of the approach by applying it to the last application
WordPress. Future work is to integrate the optimization from the
query migration into the application migration.

The suggested framework will eliminates or minimizes the effort
of rewriting the application code when the back-end data storage
system is changed. Further, the proposed transformation framework
will reduce the effort of maintaining data portability between the
different databases models. The framework transforms the design
into compatible code to support the ability of moving between the
different web applications and database systems.

REFERENCES
[1] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. 2008. SQL2XMI: Reverse

Engineering of UML-ER Diagrams from Relational Database Schemas. In Pro-
ceedings of the 15th Working Conference on Reverse Engineering ,WCRE 2008, 15-18
October 2008, Antwerp, Belgium. 187–191.

[2] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. 2009. WAFA: Fine-grained
dynamic analysis of web applications. In Proceedings of the 11th IEEE International
Symposium on Web Systems Evolution, WSE 2009, 25-26 September 2009, Edmonton,
Alberta, Canada. 141–150.

[3] ManarH. Alalfi, James R. Cordy, and Thomas R. Dean. 2010. Automating Coverage
Metrics for Dynamic Web Applications. In Proceedings of the 14th IEEE European
Conference on Software Maintenance and Re-engineering, 15-18 March 2010, Madrid,
Spain. 51–60.

[4] P. Rupali Arora and Rinkle Aggarwa. 2013. An Algorithm for Transformation of
Data from MySQL to NoSQL (MongoDB). In International Journal of Advanced
Studies in Computer Science and Engineering, IJASCSE, Volume 2, Special Issue 1.

[5] bi-connector [n. d.]. MongoDB Documentation Website. https://www.docs.
mongodb.com/bi-connector/master//

[6] M. Casters, R. Bouman, and J. Van Dongen. 2010. Pentaho Kettle Solutions:Building
Open Source ETL solutions with Pentaho Data Integration. John Wiley and Sons.

[7] W. C. Chung, H. P. Lin, S. C. Chen, M. F. Jiang, and Y. C. Chung. 2014. Jackhare:
a framework for SQL to NoSQL translation using Map-Reduce. In Automated
Software Engineering, vol. 21, no. 4. 489–508.

[8] James R. Cordy. 2006. The TXL source transformation language. Sci. Comput.
Program. 61, 3 (2006), 190–210.

[9] Cosmin Sebastian IOSIF Cristina Bazar. 2014. The Transition from RDBMS to
NoSQL, A Comparative Analysis of Three Popular Non-Relational Solutions:
Cassandra, MongoDB and Couchbase. Database Systems Journal 4, 2 (2014),
49–59.

[10] Eleni Stroulia. Diego Serrano. 2016. From relations to multi-dimensional maps: a
SQL-to-HBase transformation methodology. In Proceedings of the 26th Annual
International Conference on Computer Science and Software Engineering (CASCON
’16), Blake Jones (Ed.). IBM Corp., Riverton, NJ, USA. 156–165.

[11] Radu; Paige Richard F Ellison, Martyn; Calinescu. 2018. Evaluating Cloud Data-
base Migration Options Using Workload Models. Journal of Cloud Computing:
Advances, Systems and Applications archive, Article No. 108 7, 1 (2018).

[12] Tianyu Jia, Xiaomeng Zhao, Zheng Wang, Dahan Gong, and Guiguang Ding.
2016. Model Transformation and Data Migration from Relational Database to
MongoDB. In International Congress on Big Data, IEEE Computer Society.

[13] jsqlparse [n. d.]. Jsqlparse Website. http://www.jsqlparser.sourceforge.net//
[14] A. Kanade, A. Gopal, and S. Kanade. 2014. A study of Normalization and Embed-

ding in MongoDB. In IACC 2014, in Advance Computing Conference (IACC), 2014
IEEE International. IEEE. 416–421.

[15] C. Li. 2010. Transforming relational database into HBase: A case study. In Software
Engineering and Service Sciences (IC-SESS), 2010 IEEE International Conference on.
IEEE. 683–687.

[16] MacroScope [n. d.]. macroscope Website. http://macroscope.sourceforge.net//
[17] Alza A. Mahmood. 2018. Automated Algorithm for Data Migration from Rela-

tional to NoSQL Databases. Al-Nahrain Journal for Engineering Sciences (NJES.
21, 1 (2018), 60–65.

[18] MongoDB [n. d.]. MongoDB Manual Website. https://docs.mongodb.com/
manual/core/aggregation-pipeline-optimization//

[19] mongojdbc [n. d.]. unityjdbc Website. http://www.unityjdbc.com/mongojdbc/
mongosqltranslate.php//

[20] MySQL Proxy [n. d.]. Proxysql Website. https://www.proxysql.com//
[21] PHP [n. d.]. The PHP Website. https://secure.php.net/manual/en/mongo.

sqltomongo.php/
[22] Phpbb [n. d.]. PhpBB Website. https://www.phpbb.com//
[23] phppdo [n. d.]. php manual Website. http://php.net/manual/en/book.pdo.php//
[24] Leonardo Rocha. 2015. A framework for migrating relational data-sets to NoSQL.

In Procedia Computer Science 51. 2593–2602.
[25] J. Roijackers and G.H.L Fletcher. 2013. On Bridging Relational and Document-

Centric Data Stores. Big Data. BNCOD 2013. Lecture Notes in Computer Science,
Vol. 7968. Springer, Berlin, Heidelberg.

[26] R.P.Padhy, M. R. Patra, and S. C. Satapathy. 2011. RDBMS to NoSQL:Reviewing
Some Next-Generation Non-Relational DatabaseâĂŹs. In International Journal of
Advance Engineering Sciences and Technologies,Vol. 11, Issue No. 1, 015-030.

[27] scarf [n. d.]. SCARF - Stanford Conference And Research Forum Website. http:
//scarf.sourceforge.net//

[28] Aaron Schram and Kenneth M. Anderson. 2012. MySQL to NoSQL: Data mod-
elling challenges in supporting scale-ability. In ACM SPLASH. 19–20.

[29] R. Sellami, S. Bhiri, and B. Defude. 2014. ODBAPI: A Unified REST API for
Relational and NoSQL Data Stores. In Proceedings of IEEE International Congress
on Big Data (BigData Congress. 653–660.

[30] sqoop [n. d.]. sqoop.apache Website. https://www.sqoop.apache.org//
[31] TXLPHPGrammer [n. d.]. TXL Website. https://www.txl.ca/txl-resources.html//
[32] M.D. Weiser. 1979. Program slices: Formal, Psychological, and Practical Investiga-

tions of an Automatic Program Abstraction Method. University of Michigan, Ann
Arbo.

[33] M. Widenius and D.A. 1999. MySQL introduction. Linux Journal. 1999, 673
(1999).

[34] C.H. Lu S.C. Chen C.H. Hsu W. Chen M.F. Jiang Y.C. Chung Y.T. Liao, J. Zhou.
2016. Data adapter for querying and transformation between SQL and NoSQL
database. Journal of Future Generation Computer Systems. (2016).

https://www.docs.mongodb.com/bi-connector/master//
https://www.docs.mongodb.com/bi-connector/master//
http://www.jsqlparser.sourceforge.net//
http://macroscope.sourceforge.net//
https://docs.mongodb.com/manual/core/aggregation-pipeline-optimization//
https://docs.mongodb.com/manual/core/aggregation-pipeline-optimization//
http://www.unityjdbc.com/mongojdbc/mongosqltranslate.php//
http://www.unityjdbc.com/mongojdbc/mongosqltranslate.php//
https://www.proxysql.com//
https://secure.php.net/manual/en/mongo.sqltomongo.php/
https://secure.php.net/manual/en/mongo.sqltomongo.php/
https://www.phpbb.com//
http://php.net/manual/en/book.pdo.php//
http://scarf.sourceforge.net//
http://scarf.sourceforge.net//
https://www.sqoop.apache.org//
https://www.txl.ca/txl-resources.html//

	Abstract
	1 Introduction
	2 Approach
	3 Schema and Data Migration
	4 Query Migration and Optimization
	4.1 Query Optimization Analysis

	5 Web Application Migration
	6 Related Work
	7 Conclusion and Future work
	References

