
Author Names. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY : 1– Mon. Year

Detecting Android Malware Using Clone Detection

Jian Chen1, Manar H. Alalfi2, Thomas R. Dean1, Ying Zou1

1Department of Electrical and Computer Engineering, Queen’s University, Kingston, Canada

2School of Computing, Queen’s University, Kingston, Canada

E-mail: jian.chen@queensu.ca; alalfi@cs.queensu.ca; dean@cs.queensu.ca; ying.zou@queensu.ca

Received submit date

Abstract Android is currently the most popular smartphone operating system. However, Android

also has the largest share of global mobile malware and the significant public attention has been brought

to the security issues of Android. In this paper, we investigate the use of a near-miss clone detector to

identify known Android malware. We collect a set of Android applications known to contain malware and

a set of clean applications. We obtain the Java source code from the applications and use NiCad, a near-

miss clone detector to find the classes of clones in a small subset of the malicious applications. We then

use these clone classes as a signature to find similar source files in the rest of the malicious applications.

The benign collection is used as a control group. In our evaluation, we successfully decompiled more than

1,000 malicious apps in 19 malware families. Our results show that a small portion subset extraction set

produced 95% detection of previously known malware with very low false positives and high accuracy at

96.88%. Our method can effectively and reliably pinpoint malicious applications that belong to certain

malware families.

Keywords Android, Malware, Clone Detection

1 Introduction

Smartphones and mobile devices are in-

credibly popular and widely adopted. The An-

droid platform is a widely used open source op-

erating system for mobile devices, and it ac-

counts for over 84.7% percent of the global

2 J. Comput. Sci. & Technol., Mon.. Year, ,

smart phone market in the second quarter 2014

according to International Data Corp. (IDC).

Android is supported by the large number and

wide variety of feature-rich applications. For

example, there are already more than 1,400,000

apps in Google Play(December 2014) and there

has been more than 50 billion downloads[20]

from this pool of apps. These apps provide use-

ful features, but also become a target for crim-

inals and other miscreants and bring certain

privacy and security risks. Malware, short for

malicious software, is any software used to dis-

rupt computer operation, gather sensitive in-

formation, or gain access to private computer

systems, such as viruses, worms, Trojan horses,

and spyware.

The Android is an easy target for attack-

ers due to the open policy that anyone can pub-

lish Apps both in official markets or third-party

markets. Indeed, apps can often be down-

loaded from arbitrary web sites and installed.

Decompiling the apps is also easy due to the

structural characteristics of the app building

process, making them vulnerable to forgery or

modification attacks. A large quantity of mal-

ware has been found hidden in applications[24].

These applications are also known as repack-

aged applications, because they look and work

as existing genuine applications, but they hide

inside new code that misbehaves in the back-

ground. Android accounted for 97% of all mo-

bile malware in 2014. So Android malware de-

tection has become increasingly important.

Researchers have explored different ways

to identify these threats. Prior studies[23, 13]

showed that there are many cloned applica-

tions on mobile markets. It is straightforward

to reverse engineer an Android application and

repackage it with additional malicious function-

ality. If we can obtain the malicious code from

the malware version of the application, then we

might be able to use the malicious code as a

malware pattern to identify other malware ap-

plications at the source code level. Hence, code

clone detection technique could be an ideal

technique for malware detection. Code clone

detection is used to identify duplicated or sim-

ilar code. Applying clone detection techniques

to detect malware apps should provide more

accurate results. There may also be additional

benefits including detecting bugs, program un-

derstanding, and finding usage patterns.

Clone detection is an active research area

and has been investigated to detect malicious

software[7, 19]. Various tools for detecting

clones within and between source files have

been developed by researchers with varying de-

grees of efficacy[18]. The NiCad[12] clone de-

http://en.wikipedia.org/wiki/Malware

security firm F-Secure

Jian Chen et al.: Detecting Android Malware Using Clone Detection 3

tection tool is one such tool that has proven

effective in finding near-miss clones in source

code. In this paper, we demonstrate the detec-

tion of malware in Android applications using a

static clone detection method. Our hypothesis

is that near-miss clone detection will provide a

means of detecting mutations of known mali-

cious code. We address the following research

questions:

RQ1) Can we use clone detection tech-

niques to generate a signature set of

malicious code extracted from malicious

apps?

Clone detection result presents the clone

class information, which are the cluster-

ing of similar or identical code. The

same malware family should contain the

same malicious code. Thus, the common

code can be identified and extracted us-

ing clone detection.

RQ2) Can we use the malware signature

set to find similar malicious files in the

rest of the malicious collection?

Clone detection is to identify similar or

identical code. Hence, we can use clone

detection as a pattern matching engine to

find the similar malware signature pat-

tern in the testing set.

RQ3) Can we find the variants of one

malware family?

Malware also evolves over time. The

changes are incremental, so the new ver-

sions should contain similar code to the

original. Hence, we can use known mal-

ware to detect variants in the same fam-

ily of malware. We use known malicious

code to identify the unknown malware.

In this paper, we make the following im-

portant contributions:

1. Experiment evaluating clone detection to

classify Android malware.

2. Investigation evaluating the use of clone

detection as a pattern matching engine

for Android malware detection.

This paper is organized as follows: Section

2, summarizes related studies in Android male

detection. Section 3 presents our approach in

using clone detection to detect malware. Sec-

tion 4 explains our study design and details the

tools. Section 5 explains the research questions

and describes the study results and findings.

Section 6 lists some threats to the validity of

the study. Finally, Section 7 summarizes and

concludes the paper.

2 Related work

In Android malware detection field, re-

searchers have presented various approaches to

4 J. Comput. Sci. & Technol., Mon.. Year, ,

detect malware by applying static analysis, dy-

namic analysis, signature-based techniques.

Signature-based malware detection is a

popular technique that is similar to our ap-

proach. Patterns are derived from known mal-

ware and used to identify a malware fam-

ilies. In general, these patterns are se-

quences of bytes of instructions[15]. Previ-

ous work[9] detected these syntactic patterns

using semantic-preserving transformations and

considered semantics-aware malware detection.

Our approach can be seen as a form of signa-

ture detection. However, our signatures are

much higher-lever compare to templatised in-

struction sequences[9] and we directly compare

the pattern at the source code level. Further-

more, the underlying signature matching tech-

niques are also very different.

An example of approaches using signature-

based technique is feature hashing detection.

Juxtapp[16] is a code-reuse detection scheme

based on feature hashing. The unlabelled

classes:dex files of apps are grouped based upon

some predefined criteria to reduce the compar-

ison overhead. K-grams of various opcode se-

quence patterns within each basic block of the

program are considered as features. For exam-

ple, they choose 5-gram as a moving window of

size 5, which moves within each basic block to

map and flag the features into a m bit vector.

Then the bit vectors are further combined into

a feature metric to fingerprint each app. Jux-

tapp currently uses various predefined opcode

sequences as features. This detection scheme

is able to effectively detect various code reuse

cases, including piracy and code repackaging,

malware existence, and vulnerable code. Fuzzy

Hashing based detection DroidMOSS[23] lever-

ages specialized hashing technique, called fuzzy

hashing. Instead of computing a hash over the

entire program instruction set, a hashing value

is computed for each local unit of opcode se-

quence of the classes. It uses a reset point

to split long opcode sequences into small units

and then concatenate all the hash values into a

whole. In this way, it can localize the modifica-

tion caused by repackaging. Also, DroidMOSS

focuses on instructions’ opcode part in order

to be resilient against ”oprand string literal”

based obfuscation. DroidMOSS can efficiently

identify those pieces that were not touched by

the repackager and works well when code ma-

nipulation was only performed at a few inter-

esting points such as hard coded URLs.

Both dynamic and static taint analyses

have been proposed for tracking information

flow in mobile applications. TaintDroid[14]

is an example of dynamic taint analysis that

tracks threat information flow by instrument-

ing the Dalivk virtual machine. FlowDroid[5]

Jian Chen et al.: Detecting Android Malware Using Clone Detection 5

is a highly precise static taint analysis for An-

droid applications.

DNADroid[13] is a tool that detects ma-

licious applications through the establishment

of a program dependence graph(PDG). A PDG

represents the dependences of each operation

in a program. DNADroid uses dex2jar[1] to

convert Dalvik byte codes to java byte codes

so that they can utilize WALA[3] to construct

PDGs for every method. The detection of sim-

ilarity between two applications is based on the

comparison of matched PDG pairs. PDG tech-

nique is an often used means in clone detec-

tion, it uses semantic information about the

program, so the result has a better accuracy.

Jiang et. al [24] collect more than

1,200 malware samples and aim to system-

atize or characterize existing Android malware.

Juxtapp[16] extracted the DEX file, and an-

alyzed it for code similarity analysis among

Android applications. Crowdroid[8] applied

dynamic analysis to analyze application be-

haviours for detecting Android malware. Static

analysis[10] is based on source code or bi-

naries inspection looking at suspicious pat-

terns. DroidMat[21] presented a static feature-

based mechanism to provide a static analyst

paradigm for detecting the Android malware.

In this paper, we demonstrate a clone de-

tection approach to detect malware in the An-

droid platform. Clone detection technique has

been investigated to detect malicious software.

Walenstein et. al[19] shows that it is possible

to find the evidence where parts of one soft-

ware system match parts of another by compar-

ing one malicious software family to another.

Bruschi et al.[7] demonstrate a method to de-

tect self-mutating malware (a particular form

of code obfuscation) with clone detection tech-

niques.

3 Approach

Android malware detection techniqes use

either static, dynamic, or a combined program

analysis. Our approach uses static analysis to

perform the detection of malware in Android

applications. Our intention is to develop an

approach that would identify all possible ma-

licious app thus to achieve a high recall and

precision.

The general approach of the malware de-

tection is shown in Figure 1.

APK files[4] are the files used to distribute

Android applications and are used as input for

a reverse engineering step to obtain Java source

code files. The source files are then passed to

the clone detection phase that comprises two

phases:signature detection and cross-clone de-

tection. The NiCad clone detector is used in

the clone detection phase. It is used to identify

6 J. Comput. Sci. & Technol., Mon.. Year, ,

Fig. 1. General Process Procedure

clone classes for these two phases.

Fig. 2. Android app building process. When we

de-compiled a apk file, it is from right to left.

In order to understand the general ap-

proach, we present basic information about the

building processes of Android apps and code

clone detection techniques.

3.1 Building Android Apps

Android is a Linux-based smart phone op-

erating system designed by Google to run An-

droid applications (apps). Android apps are

written in Java and distributed as apk[4] files,

which are similar to Java jar files. The apk file

is a zip archive which contains all the code and

data needed to install and run the app. The

types of files included in the app are:

• DalVik Executable (DEX) file: The ex-

ecutable file resulting from the compila-

tion of Java source code.

• Manifest file:A file containing app prop-

erties such as privileges, the app package

file, and version.

• eXtensible Markup Language (XML) file:

A file in which the user interface (UI) lay-

out and values are defined.

• Resource file: A file containing resources

required for app execution, such as im-

ages.

Figure2 shows the series of steps for the

building and packaging of files that make up

the APK. First, the Java source code is com-

piled using the Javac compiler (included in the

Java Development Kit) producing a class file

that runs on the Java Virtual Machine (JVM).

The class file is converted to a DEX file using

the dx converter included in the Android SDK.

The DEX file runs on the Dalvik Virtual Ma-

chine.

The manifest file, and other XML files

needed for app execution are encoded in binary

https://decompileandsecureapk.wordpress.com/2014/05/10/decompile-and-secure-android-apk/

Jian Chen et al.: Detecting Android Malware Using Clone Detection 7

Fig. 3. Clone signature process steps and malware cross-clone detection steps of our approach

form.This XML document contains a num-

ber of parameters that the Android framework

needs in order to run the app. This includes

the names of the Activities, which are the dif-

ferent screens of the app, the permissions the

app requires and the API version. Developers

may also use this XML document to store any

additional information the app may use; for ex-

ample, advertising parameters are sometimes

specified here. After that, the DEX, XML,

manifest, and resource files are packaged in an

APK file, which is in ZIP format. The ini-

tially created APK file does not include the

developer signature, which is needed in order

to distribute it. The unsigned APK file can be

self-signed with the developer’s private key us-

ing Jarsigner. The developer’s signature and

the public key are then added to the APK file,

which completes the Android app building pro-

cess.

3.2 Code clone detection

Clones are segments of code that are simi-

lar according to some definition of similarity[6].

We adapt NiCad, a near-miss code clone detec-

tion tool, to help us identify the malicious code

clones in malware apps. There are two sets

of results generated by NiCad, each reported

in both HTML and XML formats. First,

the results of the comparison are reported as

clone pairs that differ in number of lines up

to the specified difference threshold. Second,

the clones in the input source are grouped into

clone classes. Each clone class contains all the

8 J. Comput. Sci. & Technol., Mon.. Year, ,

clones in the input which are similar and differ

in number of lines only up to the specified dif-

ference threshold. Both formats contain source

of the clones, specifying the degree of similar-

ity, start and end line numbers of the clones

found and the size of the clones. NiCad pro-

vides the ability to find clones at various gran-

ularities (classes, functions, blocks, statements,

etc.), with varying degrees of near-miss similar-

ity (e.g., 70, 80, 90 or 100% similar). It can be

used either to find clones within a system, or

cross-clones between two different systems.

NiCad is based on TXL[11], which is a

programming language specifically designed to

support computer software analysis and source

transformation tasks. TXL is a structural

transformation and parser-based language, for

instance it parse the Java source code based on

a TXL Java grammar.

3.3 Overview of approach

Figure 3 shows the detailed clone signa-

ture detection process steps and malware cross-

clone detection steps of our approach.Our ap-

proach consists of three main stages: File Se-

lection, Reverse Engineering, and Clone detec-

tion. Detailed description of the stages is pre-

sented in the following subsections:

3.3.1 File Selection

We select two sets of Android applications,

one containing known malicious applications,

while the other contains known benign appli-

cations. The first set of malicious applications

are divided into two sets, a training set and and

evaluation set.

3.3.2 Reverse Engineering

Reverse engineering of the Android apps

is done primarily through decompilation of the

DEX file, which can be decompiled into Java

code. To obtain the Java code, tools such as

dex2jar can be used to convert the Dalvik VM

bytecode into JVM bytecode and a Java decom-

piler such as JD-CORE[2] can then be used to

recover the Java code. This allows us to do the

clone detection on high level code. Since the

byte codes were optimized during the conver-

sion from Java byte codes to Dalvik byte codes,

thus, the generated Java is not identical to the

original Java source code. But since all of the

malware was optimized by the same converter,

the source code recovered by the reverse engi-

neering process is similar.

3.3.3 Clone Detection

Two clone detection phases are used: sig-

nature detection and cross-clone detection.

The first phase, NiCad is used to find the clone

Jian Chen et al.: Detecting Android Malware Using Clone Detection 9

classes within the malicious training set. That

is the sets of similar malware. Different mal-

ware will be clustered into different classes. We

then take one exemplar from each of the clone

classes to act as a signature for that class. This

set of exemplars is called the signature set. The

second phase, NiCad is used in cross-clone de-

tection mode to find clones of the members of

the signature set in the malicious and benign

evaluation sets. The NiCad gives us the clone

report, which we can do the further investiga-

tion of the malware analysis.

3.3.4 Results Analysis

Finally, we analyse our results to evalu-

ate our approach to see if we can find the mal-

ware android applications effectively. We eval-

uate our approach through two parameters, re-

call and precision, based on the two evaluation

sets(malicious evaluation set and benign evalu-

ation set). Recall is the fraction of all relevant

files retrieved by a query. It is a measure of

how many documents are missed. It is defined

as [17]:

recall =
|relevant files

⋂
retrieved files|

|relevant files|

In our context, the relevant files are the files in

the malicious evaluation set. The retrieved files

are those that NiCad identifies as clones of the

signature set. Thus recall measures the frac-

tion of the malicious evaluation set that was

identified by NiCad.

Precision is the fraction of relevant docu-

ments retrieved by a query. It measures how

many irrelevant documents are retrieved in er-

ror. It is defined as [17]:

recall =
|relevant files

⋂
retrieved files|

|retrieved files|

In our context, precision measures the

fraction of identified malicious code that are

in malicious evaluation set. The precision is

less than 100% when any of the benign files are

identified as clones of the signature set.

The F-measure , or accuracy, of a query is

the harmonic mean of its precision and recall.

It is a weighted average between the precision

and the recall. It is defined as [17]:

F = 2 ∗ recall ∗ precision
recall + precision

4 Case Study

In this section, we present our experiment

environment set up, dataset collection, and

data pre-processing phase.

4.1 Experiment Environment

To achieve this result, various resources

are needed. First, we need a Safe Environ-

ment: a Linux platform environment, which

provides a safe environment for testing mobile

10 J. Comput. Sci. & Technol., Mon.. Year, ,

environments, including devices, applications,

and supporting infrastructure. We install all

the following tools we used in this research on

the Linux platform.

• Dex2jar[1]: is a tool that can convert .dex

files into .class format.

• JD-CORE[2]: is a Java decompiler.

• NiCad[12]: a scalable, flexible code clone

detection system based on TXL.

• TXL[11]: software analysis and source

transformation programming language.

4.2 Data collection

In terms of dataset, we collect two groups

of APK files: benign APK files and malicious

APK files. The benign group APK files are

from a third party market AppChina . The ma-

licious group APK files are from Android Mal-

ware Genome Project.

There are two reasons we choose Ap-

pChina as our benign group source. First, It is

easier to obtain APK files from AppChina than

Google play. AppChina offers a client side as-

sistant application, which runs on PC platform

and assists to downland APK files as many as

you can. Second, we can assume the APK files

from AppChina are clean. AppChina has a

review mechanism, which will check each up-

loaded apps from developers who want to pub-

lish their apps on AppChina before the apps

are released.

We total downloaded 484 apps from 15 dif-

ferent categories of AppChina, such as browser,

camera, communication, finance, news, social,

etc. Only the top apps in each category are

downloaded.

This malware group contains 1260 An-

droid malware samples in 49 malware families.

The malware data samples are collected from

August 2010 to October 2011. It has a very

good coverage of existing Android malware.

However, we could not fully use all the sam-

ples in our evaluation. Our approach is based

on clone detection technique and we need more

than one sample to form a clone class. Some

malware families have only one sample, which

is hard to form clone class, also we separate

the malware samples into two subset:malicious

extractions set and evaluation set. Thus, we

need to choose the malware data samples that

belong to a malware family which has multiple

samples. Finally, total 1170 APK files are in-

cluded in our evaluation and they are from 19

malware families. We took a portion of each

malware family as the malicious code extrac-

tion set and the rest are kept as the evaluation

http://www.appchina.com

http://www.malgenomeproject.org/

Jian Chen et al.: Detecting Android Malware Using Clone Detection 11

Table 1. Malware sample set divided into two sub set: malicious extraction set and evaluation set

Malware Family Malicious Extraction Set Evaluation Set Total

ADRD 10 12 22

AnserverBot 10 177 187

BaseBridge 10 112 122

DroidDream 8 8 16

DroidDreamLight 10 36 46

DroidKungFu1 10 24 34

DroidKungFu2 10 20 30

DroidKungFu3 10 299 309

DroidKungFu4 10 86 96

Geinimi 10 59 69

GoldDream 10 37 47

jSMSHider 8 8 16

KMin 10 42 52

Pjapps 10 48 58

Plankton 5 6 11

SndApps 10 5 10

YZHC 10 12 22

zHash 5 6 11

Zsone 6 6 12

Total 167 1003 1170

12 J. Comput. Sci. & Technol., Mon.. Year, ,

set. Table 1 shows the detail of separation of

each malware family.

4.3 Reverse Engineering

We use a pre-processing phase to process

the APK files, so that we can take the advan-

tage of clone detection technique. The first step

of this phase is to generate the source code from

the APK files. The APK file is in .zip file for-

mat. We extract classes.dex then transform it

to JAVA source code. The processing step for

each APK file as following:

1. Extraction of classes.dex file from the

APK file.

2. Using dex2jar to transform .dex file to

.jar file.

3. Using JD-CORE to decompile the .jar

file to a Java source file.

We wrote a script to automatically pro-

cess all the APK files at once according to the

above steps. The source code gathering from

the pre-processing phase are also categorized

into benign and malicious group, and the ma-

licious source code are categorized by malware

families.

The decompiled Java source files do not

100% conform with the standard Java Gram-

mar. The following listing shows some exam-

ples of errors in the decompiled Java files, such

as empty labels, using the keyword(finally) as

a variable, using and empty type cast for an as-

signment, and dot number(a.2()) as function.

l ab e l 235 :

l o c a lOb j e c t = f i n a l l y ;

long l 1 = () (1000 .0F ∗ paramFloat) ;

pub l i c s t a t i c f i n a l f a = new a . 2 () ;

Listing 1. Example of abnormal decompiled

Java statements

Since NiCad by default uses the standerd

grammar, a modification of NiCad Java gram-

mar was necessary so that clone detector can

parse the decompiled Java files to detect the

similar code.

5 Case Study Results

This section presents the results of our

three research questions. For each questions,

we present its motivation, the analysis ap-

proach and a discussion of our finding.

RQ 1: Can we extract malicious code

from malware apps to generate a malware sig-

nature set by using Clone Detection technique?

Motivation Several researchers have ex-

plored the possibility of apply clone detection

to detect malware. However, none of them de-

tect the malware at code level. If we can ex-

tract the malicious code contained in the mal-

ware, it not only will help to identify the mal-

ware, but also can help to remove the malware.

Jian Chen et al.: Detecting Android Malware Using Clone Detection 13

Approach First, we need to obtain the

malicious code from the source code to form a

malicious signature as a malware patten. We

separate our data into three groups: benign set,

malicious code extraction set, and testing set.

In RQ1, we mainly focus on the malicious code

extraction set, which still keeps the same direc-

tory structure as the testing set. Both of them

are categorized into 19 malware families.

To generate the malware signature set, we

apply the clone detection technique to the mali-

cious code extraction data set for each malware

family separately. The NiCad clone detector

is used in this step. In each malware family

folder, there are several sub-folders which are

the decompiled java source code of each APK

sample, they should contain the identical or

similar malicious code belong to one malware

family. Thus, the NiCad can easily cluster the

identical code into one class. The clone detec-

tion report of NiCad presents the clone classes

within the malicious data extraction set. Based

on the clone class information, we can extract

the code of one member of each clone class to

form a signature set for 19 different malware

families and the code each malware family is

saved as a new java file called malewarefami-

lyname.java. Following these steps, we are be

able to obtain the malicious code from the sam-

ple set.

Findings Malicious code can form a

clone class. We examine the result of NiCad

to each malware family in the extraction set

to see if the malicious code can form a clone

class. Table 2 shows the preliminary result of

this signature detection phase. Those numbers

are the malicious code clone classes. We only

keep those clone classes that across all samples

within one malware family.

Giving an example, the first row of table

1 is the malware family ADRD. We use ten

sample apps as the malicious extraction set.

Accordingly, there are ten sub folders under

folder ADRD. We assign a sequence number

for each sub folder, in this way, we can eas-

ily identify the source file of each clone class.

Figure4 shows the partial result of the phase

one clone detection. We only show two clone

classes: class ”1” and class ”27” in this ex-

ample. Obviously, class ”27” is the malicious

code clone class, which contains the ten identi-

cal code fragment from each different apk sam-

ple source code. Although class ”1” is a clone

class, which does not cover all the sub sam-

ples, we do not take it as the malicious code

clone class. The clone report gives the location

information of the identical code, such as file

name, startline, endline. Thus, we can extract

each malicious code fragment of one member

of each malicious clone class to a new java file

14 J. Comput. Sci. & Technol., Mon.. Year, ,

Table 2. Experiment results on the malicious extraction data set

Malware Family APK Clone Class Similarity

ADRD 10 3 100%

AnserverBot 10 8 100%

BaseBridge 10 8 100%

DroidDream 8 8 100%

DroidDreamLight 10 1 100%

DroidKungFu1 10 25 100%

DroidKungFu2 10 72/18 100%

DroidKungFu3 10 2 100%

DroidKungFu4 10 3 100%

Geinimi 10 3 100%

GoldDream 10 11 100%

jSMSHider 8 33 100%

KMin 10 56 100%

Pjapps 10 2 100%

Plankton 5 2 100%

SndApps 10 4 100%

YZHC 10 4 100%

zHash 5 180 100%

Zsone 6 129 100%

Jian Chen et al.: Detecting Android Malware Using Clone Detection 15

Fig. 4. The phase one clone detection result of NiCad.

called ADRD.java.

pr i va t e boolean GetO(St r ing paramString)

{

. . .

HttpHost loca lHttpHost = new HttpHost (”

1 0 . 0 . 0 . 1 7 2 ” , 80 , ” http ”) ;

l o c a lDe f au l tHt tpC l i en t . getParams () .

setParameter (” http . route . de fau l t−proxy” ,

loca lHttpHost) ;

. . .

InputStream loca l InputStream =

loca lHttpResponse . ge tEnt i ty () . getContent ()

;

F i l e l o c a l F i l e = new F i l e (S t r ing . valueOf

(s a v e f i l e p a t h) + ”myupdate . apk”) ;

FileOutputStream loca lFi l eOutputStream =

new FileOutputStream (l o c a l F i l e) ;

. . .

}

pr i va t e void newFolder (S t r ing paramString)

{

t ry

{

F i l e l o c a l F i l e = new F i l e (paramString .

t oS t r i ng ()) ;

i f (! l o c a l F i l e . e x i s t s ())

l o c a l F i l e . mkdir () ;

r e turn ;

}

catch (Exception l o ca lExcep t i on)

{

System . out . p r i n t l n (”#ï8¹ö�Ñ�”) ;

}

}

code/ADRD.java

The above example is extracted from

com.xxx.yyy.UdateHelper.java from the

ADRD malware family. ADRD is a Trojan

that can open several system services. It can

also upload infected cell phone’s information

(IMEI, IMSI, and version) to the control server

and then receive its commands. In addition,

it can download an installation file (.apk) to

a specified directory of the SD card. Infected

cell phones will generate significant network

traffic and cause users extra expenses. The ex-

ample code shows the code set a new host to

”10.0.0.172”, can create a new folder, and save

the download apk as ”myupdate.apk”. Based

16 J. Comput. Sci. & Technol., Mon.. Year, ,

on the clone class information, we can extract

the malicious code.

The identical or similar malicious

code may not across the entire malicious

extraction set within one malware fam-

ily. This is very interesting finding, as we as-

sume that the malicious code should across the

whole extraction set within one malware fam-

ily at beginning. However, we could not find

any clone class within the DroidKungFu2 fam-

ily across the ten extraction set instead of some

clone classes from six of ten and other clone

classes from the rest of four extractions set.

Thus, we extracted the code from both differ-

ent malicious sample clone class. In table 2, we

show the numbers from different sample clone

classes for DroidKungFu2, 72 clone classes can

be clustered from six sample sets and 18 clone

classes can be formed from the rest four sample

sets.

RQ 2: Can we use the malware signature

set to detect the malware apps in the rest of the

malicious collection?

Motivation Clone detection is to identify

similar or identical code. Hence, we can use

clone detection as a pattern matching engine

to find the similar malware signature pattern

in the evaluation set.

Approach NiCad has two modes of clone

detection: standard and cross clone. The stan-

dard mode gives NiCad a single source folder

to examine all source files inside this folder are

examined for clones, which is the way used

in RQ1. The second cross clone mode com-

pares two separate folders of source code to

find code clone pairs between the two sys-

tems; no clones are detected within the single

folders in this mode. When testing in cross

clone mode, NiCad is run to compare a ”mal-

ware” and a ”testing/malwarefamliy” folder.

The malware folder contains the 19 malware

java files of known malware and the ”test-

ing/malwarefamliy” folder represents the eval-

uation set of each malware family decompiled

java source files.

Precision, recall, and F measure values are

used to evaluate the clone detection means of

malware detecting.

Findings NiCad can cluster the mal-

ware file and the evaluation set into clone

class. In other word, our clone detec-

tion technique can detect successfully the

malware. This result proves the ability of

clone detection technique in finding malware in

Android platform. Figure 5 shows the partial

cross clone detection report for ADRD malware

family. In this example, 13 files are clustered

into one clone class, one file is from the malware

signature set, which is ”malware/ADRD.java”.

From table 1, we know there are 12 mal-

Jian Chen et al.: Detecting Android Malware Using Clone Detection 17

Table 3. Experiment results on the evaluation data set

Malware Family Evaluation APK Detected Malware Similarity

ADRD 12 12 100%

AnserverBot 177 175 100%

BaseBridge 112 77 100%

DroidDream 8 7 100%

DroidDreamLight 36 9 100%

DroidKungFu1 24 23 100%

DroidKungFu2 20 20 100%

DroidKungFu3 299 298 100%

DroidKungFu4 86 78 100%

Geinimi 59 59 100%

GoldDream 37 37 100%

jSMSHider 8 8 100%

KMin 42 42 100%

Pjapps 48 39 100%

Plankton 6 5 100%

SndApps 5 5 100%

YZHC 12 12 100%

zHash 6 6 100%

Zsone 6 6 100%

Total 1003 918

18 J. Comput. Sci. & Technol., Mon.. Year, ,

Fig. 5. The phase two cross clone detection result of NiCad.

ware apps samples in the evaluation set, and

plus one malware signature file that is the cross

clone result. Thus, we can use one malware

family signature to detect all the same malware

family apps in this example. It demonstrates

the clone detection technique can be as a pat-

tern matching engine to detect the malware.

The results of cross clone detection between the

signature set are shown in Table 4.

Clone detection technique can

achieve a very high accuracy in finding

malware. Our experiment is mainly evaluated

through two parameters, recall and precision,

based on the two evaluation sets (malicious

evaluation set and benign evaluation set).

The result of the evaluation sets is shown

in Table 4. These results are calculated against

all 1003 malicious apps and 473 benign apps.

We set the similarity threshold at 100% for type

I and type II, and set it to 70% for type III. A

significant portion of the files in the malicious

testing set (91%) are detected only with type

I clone detection. Type II clone detection im-

prove the detection a little bit, and type III

did not improve detection compare to Type II.

In terms of accuracy, the overall best detection

was found to be type II clone detection at ac-

curacy of 96.88%.

RQ3) Can we find the variants of one

malware family?

Malware also evolves over time. However, the

variant is from its original malware family,

which means it may contain the similar code

with the original malware. Hence, we can use

one known malware family to detect its variant.

We try to use known malicious code to identify

the unknown malware.

Approach In our data sample, Droid-

KungFu malware has several variants, they

are DroidKungFu1, DroidKungFu2, Droid-

KungFu3, and DroidKungFu4. We use NiCad

at the standard mode to detect if there ex-

ist clone classes among the extracted malicious

code of DroidKungFu malware families. Then

we use NiCad at cross clone mode to detect the

testing set to examine the cross detection, use

Jian Chen et al.: Detecting Android Malware Using Clone Detection 19

Table 4. Experiment results on the evaluation data set

Parameters Malicious Benign Recall Precision Accuracy

Clones Clones F-Measure

type-I(exact) 918 3 91.52% 99.67% 95.42

type-II(rename) 948 6 94.51% 99.37% 96.88

type-III(near-miss) 948 384 94.51% 71.17% 81.19

Total Files 1003 473

know malware to detect the ”unknown” mal-

ware.

Findings The malicious code of vari-

ants changed a lot over time. When we ex-

ecute clone detection on the DroidKunFu mal-

ware family extracted malicious code files in-

cluding DroidKunFu1.java, DroidKunFu3.java,

DroidKunFu3.java, and DroidKunFu4.java, the

clone detection report indicates that only

DroidKunFu1 and DroidKunFu2.java contain

the identical of similar code and the number

are limited. From table 2, we know Droid-

KunFu1 has 25 pieces of code are identical

and DroidKunFu2 has 90 pieces of code in to-

tal, but NiCad can identify they have 4 pieces

of identical code. On the other hand, NiCad

can not identify any similar or identical code

among DroidKunFu1, DroidKunFu2, Droid-

KunFu3, and DroidKunFu4. Each variant does

not share too much code each other. They only

keep some same basic functions in each variant.

In the following example, DroidKungFu1 and

DroidKungFu2 keep the downlaodFile function

and onCreate function.

pub l i c s t a t i c S t r ing [] downloadFile (Context

paramContext , S t r ing paramString)

{

. . .

localHttpURLConnection = (

HttpURLConnection) localURL1 . openConnection

() ;

. . .

s t r 1 = l o c a l F i l e 1 . getName () ;

s t r 2 = getPath (paramContext , ”download

”) ;

l o c a l F i l e 2 = new F i l e (s t r 2) ;

i f (! l o c a l F i l e 2 . e x i s t s ())

l o c a l F i l e 2 . mkdir () ;

i f (! s t r 2 . conta in s (” sdcard ”))

. . .

}

pub l i c void onCreate (Bundle paramBundle)

{

super . onCreate (paramBundle) ;

LinearLayout loca lL inearLayout1 = new

LinearLayout (t h i s) ;

l oca lL inearLayout1 . s e tOr i en t a t i on (1) ;

. . .

t h i s . message . s e tTextS i z e (20 . 0F) ;

t h i s . message . setLayoutParams (new

LinearLayout . LayoutParams(−1 , −2)) ;

l oca lL inearLayout1 . addView (t h i s . message) ;

LinearLayout loca lL inearLayout2 = new

LinearLayout (t h i s) ;

20 J. Comput. Sci. & Technol., Mon.. Year, ,

. . .

}

code/DroidKungFu1.java

It is possible to detect the unknown

malware using signature set within the

same malware family variants. We use

the previous variant malware signature set to

detect the next version variant. For exam-

ple, we execute cross clone detection among

DroidKungFu1 malicious signature and Droid-

KungFu2,DroidKungFu3,DroidKungFu4 eval-

uation sets. Next, DroidKungFu2 malicious

signature set is used to do cross clone detec-

tion. Table 5 shows the variants cross clone

detection results. We can use DroidKungFu1

malicious signature detect the most of Droid-

KungFu2 and DroidKungFu4 malware apps in

the evaluation set and all the DroidKungFu3

malware apps within the evolutions set.

The extracted malicious code do not

cover the entire malicious code exist in

the malware sample set. From the result of

previous finding, it seems the DroidKungFu2

malicious signature set has a better coverage

than other signature sets. DroidKungFu2 sig-

nature set does not have any common code with

DroidKungFu3 or DroidKungFu4 signature set,

but using DroidKungFu2 signature still can de-

tect DroidKungFu3 and DroidKungFu4 mal-

ware. Thus, We examine the result further,

and found that the clone classes between Droid-

KungFu2 signature set and DroidKungFu3 or

DroidKungFu4 are totally different from the

clone classes formed by DroidKungFu3 signa-

ture set or DroidKungFu4 signature set. Thus,

the extracted malicious code for DroidKungFu3

or DroidKungFu4 are not the entire malicious

code. We mentioned before, DroidKungFu2

malicious signature set is formed by two differ-

ent group of the same extraction sample set,

one group contains six sample apps and the

other group contains the rest of four sample

apps. When extract the malicious code, we

need to take into account the clone classes that

are not across entire sample set. The root cause

of this is the quality of decompiled code. We

found some files only contain a word ”null”, it

means something went wrong when the decom-

piler tried to decompile this file.

6 Threats to validity

In this section, we discuss the threats to

validity of our study, following common guide-

lines for empirical studies[22].

Construct validity threats concern the rela-

tion between theory and observations. One ma-

jor issue of our method is that we only take java

code into account and the code quality high-

light rely on the quality of decompiler. Some

malware contain enciphered payloads and they

Jian Chen et al.: Detecting Android Malware Using Clone Detection 21

Table 5. Experiment results on the variants clone detection

Signature set DroidKungFu2 DroidKungFu3 DroidKungFu4

DroidKungFu1 13 299 79

DroidKungFu2 299 79

DroidKungFu3 0

are not regular code. Our method is impossible

to detect them. The code quality factor makes

our method not able to find all malicious code

within on malware family. Another issue is that

not all APK files can be decompiled. We total

downloaded 484 benign apps form AppChina,

11 apps could not even be unzipped.

Threats to internal validity concern factors

that can affect our results. Our clone detection

method is a signature-based approach, which

has a known limitation is that it can only detect

instances of known malware families. Though

our method can detect malware variant, it only

limits to its own variants. The malicious code

extraction in our method is based on clone class

information, if only one sample file, it can not

form a clone class. Thus, we have to eliminate

some samples from the original malware sam-

ple set. We can not guarantee the benign apps

are 100% clean. Even Google Play store still

has malware in it.

Threats to external validity concern the

possibility to generalize our results. Our mal-

ware data sample set is not the most up to date,

it only contains the malware sample from Au-

gust 2010 to October 2011. Thus, we could not

detect the latest malware. The benign data

set is only from AppChina. We should test

more benign apps against Google play store

and more other third markets. Compare other

dynamic detection method, we can not detect

zero-day malware. Our method requires we ex-

tract the malicious code first.

7 Conclusion

In this paper, we apply a clone detection

technique, a static analysis approach for detect-

ing malware in Android mobile apps ecosys-

tem. Malware that belong to one family share a

common set of characteristic code, which they

can be clustered through NiCad clone detec-

tor. We apply clone detect technique in both

standard mode and cross clone mode in our ap-

proach. The research aim of determining the

feasibility of clone detection techniques in de-

tecting script-based malware was achieved by

the clone signature on NiCad. Our experiments

indicate that our approach can detect malware

22 J. Comput. Sci. & Technol., Mon.. Year, ,

with high accuracy 96.88%. Our method can

effectively and reliably pinpoint malicious ap-

plications that belong to certain malware fam-

ilies.

References

[1] dex2jar. https://code.google.com/p/

dex2jar/.

[2] Jd project. http://jd.benow.ca.

[3] Watson libraries for analysis.

http://wala.sourceforge.net/wiki/

index.php/Main_Page.

[4] Android. A. p. k. http:

//developer.android.com/google/

play/expansion-files.html, 2013.

[5] Steven Arzt, Siegfried Rasthofer, Chris-

tian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. Flow-

droid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analy-

sis for android apps. SIGPLAN Not.,

49(6):259–269, June 2014.

[6] I.D. Baxter, A. Yahin, L. Moura, M.

Sant’Anna, and L. Bier. Clone detec-

tion using abstract syntax trees. In Soft-

ware Maintenance, 1998. Proceedings., In-

ternational Conference on, pages 368–377,

1998.

[7] Danilo Bruschi, Lorenzo Martignoni, and

Mattia Monga. Using code normaliza-

tion for fighting self-mutating malware.

In In Proceedings of International Sym-

posium on Secure Software Engineering.

IEEE, 2006.

[8] Iker Burguera, Urko Zurutuza, and Simin

Nadjm-Tehrani. Crowdroid: Behavior-

based malware detection system for an-

droid. In Proceedings of the 1st ACM

Workshop on Security and Privacy in

Smartphones and Mobile Devices, SPSM

’11, pages 15–26, New York, NY, USA,

2011. ACM.

[9] M. Christodorescu, S. Jha, S.A. Seshia, D.

Song, and R.E. Bryant. Semantics-aware

malware detection. In Security and Pri-

vacy, 2005 IEEE Symposium on, pages

32–46, May 2005.

[10] Mihai Christodorescu and Somesh Jha.

Static analysis of executables to detect

malicious patterns. In Proceedings of

the 12th Conference on USENIX Security

Symposium - Volume 12, SSYM’03, pages

12–12, Berkeley, CA, USA, 2003. USENIX

Association.

Jian Chen et al.: Detecting Android Malware Using Clone Detection 23

[11] James R. Cordy. The txl source transfor-

mation language. Sci. Comput. Program.,

61(3):190–210, August 2006.

[12] James R. Cordy and Chanchal K. Roy.

The NiCad clone detector. In Proceed-

ings of the 2011 IEEE 19th International

Conference on Program Comprehension,

ICPC ’11, pages 219–220, Washington,

DC, USA, 2011. IEEE Computer Society.

[13] Jonathan Crussell, Clint Gibler, and Hao

Chen. Attack of the clones: Detecting

cloned applications on android markets. In

Sara Foresti, Moti Yung, and Fabio Mar-

tinelli, editors, ESORICS, volume 7459 of

Lecture Notes in Computer Science, pages

37–54. Springer, 2012.

[14] William Enck, Peter Gilbert, Byung-Gon

Chun, Landon P. Cox, Jaeyeon Jung,

Patrick McDaniel, and Anmol N. Sheth.

Taintdroid: An information-flow track-

ing system for realtime privacy monitor-

ing on smartphones. In Proceedings of

the 9th USENIX Conference on Operat-

ing Systems Design and Implementation,

OSDI’10, pages 1–6, Berkeley, CA, USA,

2010. USENIX Association.

[15] Kent Griffin, Scott Schneider, Xin Hu, and

Tzi-Cker Chiueh. Automatic generation

of string signatures for malware detection.

In Proceedings of the 12th International

Symposium on Recent Advances in Intru-

sion Detection, RAID ’09, pages 101–120,

Berlin, Heidelberg, 2009. Springer-Verlag.

[16] Steve Hanna, Ling Huang, Edward Wu,

Saung Li, Charles Chen, and Dawn Song.

Juxtapp: A scalable system for detecting

code reuse among android applications. In

Ulrich Flegel, Evangelos Markatos, and

William Robertson, editors, Detection of

Intrusions and Malware, and Vulnerabil-

ity Assessment, volume 7591 of Lecture

Notes in Computer Science, pages 62–81.

Springer Berlin Heidelberg, 2013.

[17] C. J. Van Rijsbergen. Information Re-

trieval. Butterworth-Heinemann, Newton,

MA, USA, 2nd edition, 1979.

[18] Chanchal K. Roy, James R. Cordy, and

Rainer Koschke. Comparison and evalua-

tion of code clone detection techniques and

tools: A qualitative approach. Science of

Computer Programming, 74(7):470 – 495,

2009. Special Issue on Program Compre-

hension (ICPC 2008).

[19] Andrew Walenstein and Arun Lakho-

tia. The software similarity problem

in malware analysis. In In Proceedings

Dagstuhl Seminar 06301: Duplication, Re-

24 J. Comput. Sci. & Technol., Mon.. Year, ,

dundancy, and Similarity in Software, 10

pp., Dagstuhl, 2006.

[20] Wikipedia. Google play@ONLINE.

http://en.wikipedia.org/wiki/

Google_Play, 2014.

[21] Dong-Jie Wu, Ching-Hao Mao, Te-En

Wei, Hahn-Ming Lee, and Kuo-Ping Wu.

Droidmat: Android malware detection

through manifest and api calls tracing. In

Information Security (Asia JCIS), 2012

Seventh Asia Joint Conference on, pages

62–69, Aug 2012.

[22] Robert K Yin. Case study research: De-

sign and methods. Sage publications, 2014.

[23] Wu Zhou, Yajin Zhou, Xuxian Jiang, and

Peng Ning. Detecting repackaged smart-

phone applications in third-party android

marketplaces. In Proceedings of the sec-

ond ACM conference on Data and Appli-

cation Security and Privacy, CODASPY

’12, pages 317–326, New York, NY, USA,

2012. ACM.

[24] Yajin Zhou and Xuxian Jiang. Dissecting

android malware: Characterization and

evolution. In Security and Privacy (SP),

2012 IEEE Symposium on, pages 95–109,

2012.

Jian Chen Jian Chen

received the MSc Degree in

computer science form the

Queen’s University in 2014.

He haw worked as a software

developer for many years. He

is pursuing a Ph,D. degree at

Queen’s University.

Manar H. Alalfi Dr.

Alalfi is an Adjunct Assistant

Professor in the School of

Computing at Queen’s Uni-

versity. Dr. Alalfi is spe-

cialized in software engineer-

ing and it. s synergy with

diverse research areas includ-

ing: Model Driven Engineer-

ing (MDE) for Web applica-

tions Security Analysis, MDE for Automotive

Systems, Scientific Software Engineering, and

Mining Software Repositories.

Thomas R. Dean Dr.

Thomas Dean is an Associate

Professor in the Department

of Electrical and Computer

Engineering at Queen’s Uni-

versity and an Adjunct Asso-

ciate Professor at the Royal

Military College of Kingston.

Jian Chen et al.: Detecting Android Malware Using Clone Detection 25

His background includes re-

search in air traffic control

systems, language formalization and five and a

half years as a Sr. Research Scientist at Legasys

Corporation where he worked on advanced soft-

ware transformation and evolution techniques

in an industrial setting. His current research

interests are software transformation, web site

evolution and the security of network applica-

tions.

Ying Zou Dr. Ying

Zou is a Canada Research

Chair in Software Evolution.

She is an associate professor

in the Department of Elec-

trical and Computer Engi-

neering and cross-appointed

to the School of Comput-

ing at Queen’s University in

Canada. She is a visiting sci-

entist of IBM Centers for Advanced Studies,

IBM Canada. Her research interests include

software engineering, software reengineering,

software reverse engineering, software mainte-

nance, and service-oriented architecture.

