
An Approach to Represent and Transform Application-Specific
Constraints for an Intrusion Detection System

Ayesha Babar, Fahim Imam, Thomas R. Dean
Queen’s University

Kingston, Ontario, Canada
{ayesha.babar,fahim.imam,tom.dean}@queensu.ca

Jose Fernandez
Ecole Polytechnique

Montreal, Quebec, Canada
jose.fernandez@polymtl.ca

ABSTRACT
While the need for newer and more efficient network security tech-
niques is increasing, refining the existing and proven techniques
can also have potential benefits. One of the aspects of such improve-
ments in the existing systems is making them flexible to modify.
Currently, we have an intrusion detection system (IDS) that defines
the normal patterns of a network behaviour using constraints. The
IDS dissects the network packets into network information to eval-
uate the constraints. In this research, we extend the existing IDS to
validate constraints defined on application data. We extend the IDS
to further dissect the data within the incoming network packets.
We define the data constraints to identify possible malicious incon-
sistencies in the application data of a closed network such as the
Air Traffic Control (ATC) as an example. We use an ATC ontology
for the ATC domain data representation and threat evaluation. We
modify an existing ATC simulator and use it to generate both clean
and malicious data. Rules and queries are then developed for these
data using the ontology to represent detectable threats. The queries
are then transformed into application data constraints readable by
the IDS. While the transformation is defined as a manual process,
the IDS will be updated with automated transformation in the fu-
ture. The data constraints are written in the same domain-specific
language (DSL) already used for the IDS that ensures real-time
performance. In this paper, we present our approach to represent
and transform application-specific constraints for our IDS along
with examples.

CCS CONCEPTS
• Security and privacy → Network security; • General and
reference→General conference proceedings; •Networks→
Network reliability.

KEYWORDS
Intrusion Detection, Data Constraints, Program Transformation
ACM Reference Format:
Ayesha Babar, Fahim Imam, Thomas R. Dean and Jose Fernandez. 2020. An
Approach to Represent and Transform Application-Specific Constraints for
an Intrusion Detection System. In CASCON ’20: 30th Annual International

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CASCON ’20, Nov 10–13, 2020, Toronto, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Conference on Computer Science and Software Engineering, Nov 10–13, 2020,
Toronto, Canada. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION
Cybersecurity is a vital concern as networks surround all aspects of
our lives. While the internet may put our information and identity
at risk, closed safety-critical network systems such as air traffic
control systems (ATC) or nuclear plants may put lives at risk.

Intrusion detection systems (IDS) monitor networks for mali-
cious behaviour. IDSs emphasize the detection of malicious data at
the network level. However, malicious data can also occur at the
application layer. For example, the ATC systems have come to rely
more on Automatic Dependent Surveillance–Broadcast (ADS–B)
to extend radar coverage. However, ADS-B has no authentication,
and anyone with a software defined radio can transmit false ADS-B
data.

We have previously described an IDS designed for network in-
tegrity of closed networks such as ATC [31]. This IDS detects ab-
normal behaviour at the network level using a constraint engine. In
this research, we leverage the IDS to detect the presence of attacks
at the application layer. It may be true that the application logic is
equipped to deal with possible corruption of data. However, appli-
cation logic is complex due to the fact that it must both validate and
operate on the data. Malicious external data is not always obvious.
Adding an additional check on the application level data provides
in-depth defense to the system.

We use a simulated ATC system to produce simulated air traffic
data. This data is parsed and translated into resource description
framework (RDF) [14] graph database, using an ATC ontology. We
use SPARQL [15] to develop queries that represent the integrity
of the information. We then manually translate the domain level
threats to the low-level constraints used by our IDS. This allows
us to prototype the transformation, and identify changes needed
in the implementation of constraint engine to support application
level constraints.

The main contribution of our work are:

• Extension of existing constraint based IDS to identify data
integrity.

• A specification of transformation of a threat from natural
language to a domain specific language, used to generate a
custom IDS.

• Testing and evaluation of data constraints with the existing
IDS framework.

• Proposing required extensions in the existing framework for
new proposed data constraints.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

The structure of the rest of the paper is as follows. Section 2
provides a description of the existing framework, ATC simulation
and ATC ontology. Section 3 discusses selected threat scenarios
of the research. Section 4 describes the transformation process,
followed by Section 5 to illustrate the transformation process. The
evaluation of IDS and results are presented in Section 6 followed by
the related work in Section 7. We conclude the paper and discuss
the future work in Section 8.

2 BACKGROUND
To model the cyber threats we use an ATC simulator developed
by Morel [26] to generate the ATC data for our IDS. Originally
developed by Hasan et al. [17], the IDS detects intrusions based
on anomalous network behaviour. The IDS is based on constraints
capable of detecting anomalies in a limited access, closed networks
such as ATC. Such networks are characterized by a limited number
of protocols which makes it possible to define the normal network
behaviour as constraints. The current version of the IDS detects
intrusions based on protocol-specific constraints. One of the goals
of this research is to extend the IDS to specify application-specific
data constraints. The IDS can then detect anomalies in the data
carried in the network packets. Figure 1 shows the IDS architecture
along with the application level extensions. The modified IDS now
implements two kinds of constraints: a) protocol-specific network
packet constraints, b) application-specific data constraints. We refer
to the former as the network constraints and the later as the data
constraints.

Application Data. The application layer supports application
and end-user processes. It provides application services for file
transfers, e-mail, and other network software services [1]. In our
research, ATC application data is generated by the air traffic control
simulation. This data is embedded in the captured network packets
and is parsed by an application data parser. Examples of applica-
tion data are the speed of an aircraft or the position of an aircraft
detected by radar. An example of a constraint on the data is that
the speed of an aircraft is within a given range. The constraints
that ensure integrity of the application domain data are referred as
application data constraints or data constraints.

Network Data. The data captured by the IDS framework that
deals with the network layer is referred to as ‘network data’ for the
purpose of our research. This data is parsed by a network parser, and
the constraints that check the integrity in this data are referred to as
network constraints. Network constraints are already implemented
and evaluated by the IDS. An example of this constraint is that the a
publisher in the Real-Time Publish-Subscribe protocol (RTPS) [13]
has previously declared that it is a participant.

2.1 The Intrusion Detection System
The input to the IDS framework is a network protocol specification
written in the Structure and Context-Sensitive language (SCL) [23].
SCL describes the syntax and the semantic constraints of a given
protocol. Since SCL supports both context dependant parsing and
specifying general constraints, it is used to generate the two main
components of the IDS: the parser and the constraint engine. The
generated custom parser reads the network packets and converts
them in a format readable by the constraint engine. The constraint

ATC

Simulation
IDS

ATC Ontology v

Data Alerts

Network Alerts

Network Packets

Network

Constraints

Application

Constraints

Figure 1: The IDS architecture with extensions.

engine validates these packets against the defined network con-
straints and generates alerts.

The constraints in SCL are first transformed into an intermedi-
ate DSL which describes the constraint tree life-cycle along with
memory management. The constraints in the intermediate DSL are
then used to automatically generate the constraint engine in C. The
DSL describes the constraint tree life-cycle defined by Hasan et
al. [16] and has the following four phases: Instantiate (I), Bind (B),
Evaluate (E), and Destroy (D). We refer to the DSL as the IBED DSL
based on the life-cycle phases. The first, instantiate, occurs when an
initial packet of a constraint is encountered. This causes an instance
of the internal data structure to be allocated for a constraint tree.
The bind phase is used when additional packets are encountered
that add information to a constraint tree. The evaluate phase adds
the final data to the constraint and evaluates it. Since a constraint
may be evaluated multiple times, the destroy phase is used when a
packet is encountered that indicates that particular instance of the
constraint is redundant. Details about the IBED DSL can be found
in Rakha et al. [31].

In this approach, the constraints are intended to validate the last
packet in the constraint. The previous packets in the constraint
are used to provide needed information to validate the evaluation
packet.

2.2 The ATC Simulation
The ATC Simulation is designed and developed by Morel [26] and
generates the data used in our research. While the simulation is
not a complete representation of an ATC system it provides the
necessary components for our research [48]. The ATC is simulated
over a closed Data Distributed Service (DDS) network using the
RTPS protocol. The main components of the ATC simulation are
shown in Figure 2. An existing ATC simulator, Euroscope [8], is used
to generate and visualize ATC data using the FSD protocol (FSD and
Euroscope in the figure). We use a multiplexer to split the data and
transform it to DDS representations of Primary Surveillance Radar
(PSR), Secondary Surveillance Radar (SSR), Automatic Dependant
Surveillance-Broadcast (ADS-B) data.

2.3 The ATC Ontology
The ATC ontology defines the domain with the help of a controlled
and precise vocabulary. When describing the ATC domain, we
define the concepts that are present in the domain. For example,
speed is a concept and it has a meaning and context in our domain.
Some concepts can be explained using relations between other

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

FSD EuroScope

MULTIPLEXER

PSR

ADSB

Server

SSR

ADSB

localhost
(6809)

(6808)

DDS Network 1

PSR FSD

Client

SSR FSD

Client

PSR

Publisher

PSR

Subscriber

SSR

Publisher

SSR

Subscriber ADSB

Publisher
ADSB

Subscriber

Figure 2: ATC Simulator Architecture Model, adapted from
Morel [26]

Raw Data
Coming from

Sensors

Ontological
concepts
identified

RDF

Model
Ontology

SWRL

Rules
SPARQL

Figure 3: ATOM detection process, adapted from Cor-
riveau [21].

concepts and/or objects. Some concepts can be described as data
structures. The vocabulary used for the ATC domain is concise, and
includes classes, sub-classes and relations between them.

The ATC ontology research by Morel [26] is a practical applica-
tion of the ATOM [21] process. Abstractions-Translation-Ontology-
Method (ATOM) is a step-wise method to develop an ontology for
a domain specific system.

The ATOM process produces three artifacts: the final ontology,
the translation diagram, and the specification document. The final
ontology is in the form of a Resource Description Framework (RDF)
graph [30]. RDF is themost commonway of representing ontologies.
In RDF, an ontology is represented as a set of (Subject, Predicate,
Object) triplets. The subjects and objects are the nodes of the graph,
and the predicate is the property or relation between them. For
example, the instance of a concept an aircraft that has a specific
speed can be expressed in (PlaneA, hasSpeed, 370).

The ATOM process shown in Figure 3 is used to develop an ap-
proach to anomaly detection in the ATC domain. After examining
the application data in the network packets, the concepts are iden-
tified, and the RDF model is created. The RDF model is then used to
initiate the ontology. The nodes are the entities (e.g. airplane, radar,
speed) and the edges are the relations between the entities. Further
reasoning and flexibility can be added to the ontology by applying
rules. The final stage is a querying mechanism, which is used to
retrieve and update the information in the ontology. The query
language we use is SPARQL (SPARQL Protocol and RDF Query
Language) [27]. We have extended Morel’s initial ATC ontology1
for our research.

1Available at http://pyxis.ece.queensu.ca/graph/atc/ontologies/atc.owl

New modules have been added to the original ontology to sup-
port the representation of Flight Plan data, PSR report, and SSR
report. The core ontology is modified to provide better organiza-
tion to navigate its classes and properties. The current ontology
provides the logical framework to consistently describe, query, and
reason about different ATC attacks, including the types of attacks
described in this paper. The ontology currently includes 72 classes,
39 object properties, 40 data properties, and 250 logical axioms.

2.4 IDS and the ATC Simulator Extensions
To support the evaluation of application-specific data constraints
we have extended the existing IDS architecture as shown in Figure 4.
An application protocol specification is used to generate a parser
for the application specific data encoded in the network data. The
ontology from the ATOM Process is shown in the upper right. It is
used to initialize the graph database and also to derive a mapping
specification that identifies the relationship between the low level
data in the packets and the primitive entities and relations present
in the data. The RDF mapping is used to automatically generate an
RDF translator that populates the graph database with primitive
entities and relations. This database can be enhanced with rules and
a set of queries are identified that should be continuously evaluated
by the constraint engine. These extensions in the upper box have
been completed previously.

This paper describes the extensions in the lower box. We trans-
form the queries to a set of application level constraints which is
used to generate the application level constraint engine. This is
currently a manual transformation and we are working to automate
this transformation in the future.

The ATC Simulation was updated to take flight plan information
from EuroScope and model as flight strips in the simulated ATC
network. It was also updated to allow scripts that inject fake ADS-B
data into the simulation.

3 THREAT SCENARIOS
The nature and requirements of command and control systems
such as ATC differ from traditional IT systems. Cerchio et al. [9]
identify the primary requirements of ATC systems as Integrity and
Availability. Cerchio et al. also claim that airborne and seaborne
environments are not often considered in security research. While
the ground part of an ATC system is a closed network, it still re-
ceives outside information without verification. Threats against
open communication networks are related “mainly to message in-
sertion (confidentiality), modification (integrity) or suppression
(availability)” [34]. Thus, ATC systems are vulnerable to potential
attacks some of which are targeted directly at message integrity.

Automatic Dependent Surveillance-Broadcast (ADS-B) has be-
come a key component of ATC systems. The U.S. Federal Aviation
Administration (FAA) has required certain aircraft to have installed
ADS-B by January 2020 [29]. The threats we consider in this paper
are based on this mandate and are information attacks on ADS-B.
Balduzzi et al. [2] identify several threats against Automated Identi-
fication System (AIS) a system similar to ADS-B for ships. AIS and
ADS-B are examples of security critical networks. Both transmit
information periodically and are enhance the situational awareness
of entities in the system. ADS-B and AIS are subject to attacks

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

of the same nature, which are to intercept, modify, or delete the
messages [22]. We use the same categorization as Balduzzi et al. [2]
due to similarities between AIS and ADS-B. Their categorization
shows that the attacks can be done at two levels: software and
radio frequency (hardware). Among the software identified threats,
spoofing and hijacking are two major categories, and both can be
modelled under the data related attacks.

We implemented three threat models: Ghost Plane, Physical
Law Violation and Spoofed Location. They represent breach to
the integrity, confidentiality and authentication of the system. The
ghost plane threat scenario simulates malicious ADS-B data of an
aircraft that doesn’t exit. The threat can be detected if it is within
the range of primary radar, is at an altitude that is not in the radar
shadow, but is not detected by the radar. This plane can have SSR
or ADS-B updates. If outside the range of radar, a ghost plane can
be detected if it violates the law of physics. That is, if it descends
or ascends faster than the aircraft category, or turns too fast or too
slow, or has a speed outside the range of the aircraft type.

Another attack is to monitor existing ADS-B broadcasts for an
aircraft and immediately broadcast a new position that overrides
the real position. This attack can be detected based on the time
intervals of the ADS-B messages.

4 TRANSFORMATION PROCESS
Figure 5 shows the artifacts involved in both the IDS framework and
the ATOM process. For both, the network packets generated by the
ATC simulator are first parsed into useful data structures. The IDS
uses the constraints defined in IBED DSL and protocol specification
in SCL, and auto-generates the C code for the constraint engine.
The constraint engine uses the generated C code to evaluate the
constraints and ensures network integrity in real-time. The ATOM
process translates the parsed network packets into RDF triples
using a RDF translator. The resulting RDF is be stored in a graph
database. SPARQL [15] queries are used to analyze and understand
different aspects of data. The main purpose for these queries is to
diagnose and investigate the packet data for constraints that can
be used to assess the health of the data. We first transform the
SPARQL queries from the ATOM process into SCL constraints and

Constraints

C code

SCL Constraints

IBED DSL
Ontology + Rules

RDF

SPARQL Queries

ATOM

Process

IDS

Framework

Manual

Transformation

Parsed Network

Packets

Manual

Transformation

Figure 5: Transformation of SPARQL queries to IBED DSL
constraints.

then transform the SCL constraints into the IBED DSL for our IDS
framework.

SPARQL queries are used for exploratory purposes by domain
experts to formulate the constraints at a high level. The IBED DSL
constraints are used to detect intrusions at run time by the con-
straint engine. Both SPARQL and IBED DSL queries represent the
threat in the application data domain which can be expressed in
First Order Logic (FOL). The complete transformation process con-
sists of six artifacts as shown in Figure 6.

The first artifact is a query specification in Natural Language.
Each of the steps between the artifacts up until artifact 5 (IBED DSL
of constraints) are currently manual in nature. The final step, used
to generate the C code is partially automated. We now describe
each step below and explain the involved representations.

Step 1: Query Specification in Natural Language.
We start by naming the queries that represent the respective

threat. We define them as a concise statement in natural language.
We try to remove as much syntactic or lexical ambiguities as possi-
ble. This definition helps in the true representation of the query.

This definition provides a basis for the FOL representation of
the queries in the next step.

Network Packets

Network

Constraints

Network Protocol

Specification

Network Parser \Network CE

Alerts Alerts

App. Protocol

Specification

\
App. Data

Transformation

App. Data Parser

RDF

Mapping

RDF Translator

GraphDB

Queries

App. Data

Constraints

\App. Data CE

Alerts

Ontology

Figure 4: IDS runtime framework architecture.

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Query Specification in Natural Language

Query Description in FOL using ATC ontology

SPARQL Representation of Queries

SCL Representation of Constraints

IBED DSL Representation of Constraints

1

2

3

4

5

Generated C code for Constraints6

Figure 6: Transformation process from Natural Language to
low-level constraint engine code.

Step 2: Query Description in FOL using ATC Ontology. In
this step we decompose the natural language description of the
queries into concepts and relations using the ATC ontology. Once
a query is broken down into basic concepts and relations, we can
represent it in FOL. For example, the FOL representation of the
statement “if an aircraft has an SSR report and that SSR report has
some reported speed s then s is the speed of that aircraft” is:
∀x : Aircar f t ∃r : SSRReport ∃s : ReportedSpeed
hasSSRReport(x , r) ∧ hasReportedSpeed(r , s) → hasSpeed(x , s)

The FOL statements are used to construct the SPARQL queries as
part of the next step.

Step 3: SPARQL Representation of Queries.
The FOL description use the ATC ontology vocabulary which

gives context to the concepts and relations of the queries. The
context forms the basis for the SPARQL query representation. We
use RDF to represent and store application data. We translate the
raw data of the packets to RDF and store in a graph database. After
translating the FOL queries to SPARQL, the graph database provides
an executable environment to refine the queries and test them
against the simulated data.

Step 4: SCL Representation of Constraints.
This step maps the queries from the concepts in the ontological

space as expressed by RDF and SPARQL to the network protocol
space as expressed by SCL. This moves representation of the queries
closer to the network level. For example, the concept speed is
mapped to the protocol data SSRModeSType.airspeed.

The Structure and Context-Sensitive Language (SCL) is an ex-
tension of ASN.1 (a network specification language widely used by
network engineers). SCL provides a higher abstraction compared
to the IBED DSL, but is still attached to the representation and
organization of the data given by the protocol specification.

SCL specifies the behavior of the IDS for the incoming packets.
Each packet must have one or more constraints that specify the
validity of the packet [18]. The SCL constraints specify the how
the information in the specified packet depends on information in
previous packets. For example, the maximum reasonable speed of

an aircraft in an ADS-B packet depends on the type of the aircraft
which was a field in an earlier flight strip packet.

1 <constraints >

2 <constraint >

3 TYPE: SINGLE -PACKET -ENV

4 VALID -ENV: @RTPS.DATA_P (SrcIP , DstIP , DstPort)

5 </constraint >

6
7 <constraint >

8 TYPE: MULTI -PACKET

9 VALID -SEQ: (1) RTPS.DATA_W , @RTPS.GAP

10 {

11 @RTPS.GAP.SrcIP == (1) RTPS.DATA_W.SrcIP

12 @RTPS.GAP.writerEntityID ==

13 (1) RTPS.DATA_W.writerEntityID

14 }

15 </constraint >

16 </constraints >

Listing 1: Syntax convention of SCL SINGLE and MULTI
packet constraints [18].

Listing 1 shows an example of two constraints in SCL. The key-
word TYPE indicates if the constraint is on a single packet (the
value SINGLE-PACKET-ENV), or if it involves multiple packets (the
value MULTI-PACKET). The TYPE is followed by the sequence of the
packets required for the and the type of the target packet. The
target packet is prefixed with the symbol ‘@’. For single packet
constraints, there is only one packet involved, the target packet.

Listing 1 has a single-packet environment constraint (lines 2-4).
Environment constraints refer to entities in the particular environ-
ment. Our constraint engine has two modes. When first run on
a new system, environmental constraints record the information
in the constraints, such as the IP addresses of RTPS participants
(DATA_P), or the publishers of particular data topic. As such, envi-
ronmental constraints list the fields to be memorized as part of the
constraint.

For a multi-packet constraint, the target packet is always the last
or second last packet in the sequence, as the constraint is written
from the point of view of the last packet that triggers the constraint.
It may by optionally followed by the packet type that indicates that
the instance of constraint is no longer needed (prefixed with the
symbol ‘~’. In Listing 1, a GAP submessage in the RTPS protocol
must be proceeded by a publisher packet (DATA_W) that introduces
the entity id in the gap packet.

Step 5: IBEDDSLRepresentation of theConstraints. Trans-
formation specification of constraint from SCL to an IBED DSL
representation is the final step our transformation process. IBED
DSL code maps the packets to the constraint tree life-cycle: instan-
tiate, bind, evaluate and destroy. The IBED DSL constraint trees can
perform real-time evaluation and provide efficient memory man-
agement for the constraint engine [31]. As part of this research the
IBED DSL was extended to handle concepts that had not previously
been used for constraints at the network infrastructure level. The
details of the extension are described in section 6.2

Step 6: Generated C code for Constraints. The IBED DSL is
the final step of the manual transformation. The IDS framework

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

uses the IBED DSL to generate low-level code for constraint engine
evaluation. The generated code for the data constraints validate
the application data integrity for incoming packets and raises ap-
plication alerts. The IDS framework uses TXL (a language designed
for source code transformation [6]) for auto transformation of DSL
code to the C code. As part of this research, the translator was
extended for the new concepts identified in step 5. Other than the
extensions in the auto-generated code, IBED DSL representation
also requires some extensions for correct transformation to c code.
For our application domain constraints we manually fixed the gen-
erated code for testing.

5 TRANSFORMATION EXAMPLE
In this section, we illustrate the process with one of the threats we
identified in section 3

5.1 Violation of Physical Law
This example represents one of the queries that might reveal mali-
cious ADS-B data for an aircraft that doesn’t exit. If the reported
position of an aircraft is outside the range of a radar antenna, then
there is no independent confirmation of the data. A malicious actor
might not fully check the data for consistency before broadcasting
it, particularly if they are modifying an existing attack. They may
get the speed or other characteristics of an aircraft type wrong.
This query checks that the speed of an aircraft is consistent with
the category of the aircraft.

5.1.1 Step 1 - Query Specification in Natural Language. .
Query Title: The Speed violation of an aircraft at cruising alti-

tude.
Query Definition: The speed of an aircraft is too slow or fast

while flying at the cruising altitude, based on the speed range of
the aircraft category given by the SSR reports.

Query Description: We identify the ontological concepts such
as Aircraft, SSRReport, Speed and AircraftCategory alongwith
their relations. Every aircraft has an aircraft category. In the simu-
lation, ADS-B reports are an instance of an SSR data message. They
are distinguished from SSR radar reports by the equipment field in
the packet. The ADS-B packets for some aircraft may be received
(relation hasSSRReport). Some SSRReports (there are several type)
contain the speed of the aircraft (relation hasReportedSpeed).

5.1.2 Step 2 - Description of the Query in FOL using ATC ontology.
An aircraft has SSR report and the aircraft is identified with a
unique number called target ID in these reports. The SSR report
has information about the aircraft. Information such as the speed
of an aircraft in these reports can be expressed as:

∀x : Aircar f t ∃r : SSRReport ∃s : ReportedSpeed
hasSSRReport(x , r) ∧ hasReportedSpeed(r , s) → hasSpeed(x , s)

The SSR reports for aircraft have other information about the air-
craft such as the category of the plane. For example, a Boeing A380
belongs to the aircraft category C [19]. Each of these categories has
a known minimum and maximum speed.

The ADS-B reports contain the speed of the aircraft, as well as
the category of the aircraft. The following query that identifies
aircraft whose speed is outside of the range of the category:

∀x : Aircar f t ∃r : SSRReport ∃c : Aircra f tCateдory
∃s : ReportedSpeed ∃m : MaxSpeed ∃l : MinSpeed
hasSSRReport(x , r) ∧ hasReportedSpeed(r , s) ∧
hasReportedAircra f tCateдory(r , c) ∧ hasMaxSpeed(c,m)

∧hasMinSpeed(c, l) ∧ ((s > m) ∨ (s < l))
→ hasViolatinдSpeed(x , s)

Table 1 lists the ATC ontology relations used for the query. The
relations hasMaxCSpeed and hasMinCSpeed refer to the maximum
and minimum speed and are not part of the ontology vocabulary.
For these queries added as extra relations in the graph database.
The Table 1 shows the types of the domain and range for each the
properties.

Domain Predicate Range
Aircraft hasSSRReport SSRReport
SSRReport hasAirspeed xsd:integer
SSRReport hasAircraftCategory xsd:string
AircraftCategory hasMaxCategorySpeed xsd:integer
AircraftCategory hasMinCategorySpeed xsd:integer

Table 1: Step 2 - Violation of the Physical Law and Ontology
Vocabulary.

5.1.3 Step 3 - The SPARQL Query. The SPAQRL Query in listing 2
is the translation of the FOL query from the previous section. This
query is expressed in the same RDF framework as the data mapping
that was used to map the application data in network packets to the
graph database. This is the first point in time that we can test the
query against data from the simulation. This query was successfully
run against both clean data from the simulation, and data that
contained simulated malicious data.
1 SELECT ?assignedTargetID ?ssrReport

2 ?reprotedSpeed

3 FROM FastInjectedData:

4 WHERE {

5 ?ssrReport ssr:hasTargetID ?assignedTargetID;

6 ssr:hasAircraftCategory ?reportedCategory;

7 ssr:hasAirSpeed ?reprotedSpeed;

8 st:hasMaximumCategorySpeed ?maxCategorySpeed;

9 st:hasMinimumCategorySpeed ?minCategorySpeed.

10 FILTER ((? reprotedSpeed < ?minCategorySpeed)

11 || (? reprotedSpeed > ?maxCategorySpeed))

12 }

Listing 2: Step 3 - SPARQL Query for the Violation of the
Physical Law.

5.1.4 Step 4 - SCL Representation. We transform the SPARQL query
to a corresponding SCL constraint. The mapping of RDF elements of
the SPAQL query to network fields used in SCL is given in Table 2.

Listing 3 gives a SCL representation of the SPARQL query. This
is an extension to the SCL language to allow a logical constraint on
the fields of a single single packet. the target packet of the constraint
is an SSR Mode S packet. The same packet destroys the instance of
the constraint that is created. The second extension to the language
is the addition of the domain element that allows the constraint

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Ontology Relations SCL Field Name
ssr: SSRModeSType
ssr:hasTargetID SSRModeSTyp.target_id
ssr:hasAirSpeed SSRModeSTyp.airspeed
ssr:hasAircraftCategory SSRModeSType.category
st:hasMaximumCategorySpeed used as a scalar value
st:hasMinimumCategorySpeed used as a scalar value
Table 2: SCL fields to the ontology relations mapping.

writer to reference elements of the domain. The constraint simply
says that the speed must be between minimum and maximum value
for the category.

1 <constraint >

2 TYPE: SINGLE -PACKET

3 VALID -SEQ: @SSRModeSType , ~SSRModeSType.

4 {(@SSRModeSType.airspeed

5 > Domain.CategoryMinSpeed)||

6 (@SSRModeSType.airspeed

7 < Domain.CategoryMaxSpeed)}

8 </constraint >

Listing 3: Step 4 - SCL Representation of the Violation of
the Physical Law.

5.1.5 Step 5 - IBED DSL Representation. In the SCL representation
of the constraint, it is a single packet constraint and requires com-
parison of only one value, airspeed, for each incoming SSR packet
and after comparison it can be destroyed. The IBED DSL is shown
in Figure 4.

The constraint starts with the validation tree, that has three
values, the speed of a plane, the min and max speed for a category
(categoryMaximumSpeed and the categoryMinimumSpeed).

The DSL requires both an instantiate phase and and an evaluate
phase. Nominally these are triggered by different packets and a
hash table on values shared between the packets are used to transfer
the instance of the constraint tree from one packet to the other.
The code for each packet type is generated first for instantiate,
bind second, evaluate third and last for destroy. We take advantage
of this when generating code to evaluate a predicate on a single
packet.

In the instantiate phase on line 6 through line 15 is triggered
by an SSRModeSType packet and the values required from the
incoming packets are copied to the tree. The notation has been ex-
tended with two domain information functions, DomainLookUpMax,
line 11, and DomainLookupMin, that provide external information
based on information in the packet. In this case, we use the field
aircarft$category to find the maximum and minimum speeds
of the aircraft. We store the tree instance in the hashtable for use
in the evaluate phase.

In evaluate, line 17 through line 24, we recover the tree instance
and evaluate it. In destroy we find the tree and destroy it, line
27. As the needed extensions to the constraint engine are in the
process of being implemented, a simplified version of the DSL was
implemented and after the code was generated, was hand patched

to add the needed operators to the evaluation of the tree and in
code for the instantiate phase.

1 CONSTRAINT AD42
2
3 V(AND(LT(speed, categoryMaximumSpeed),
4 GT(speed, categoryMinimumSpeed)))
5
6 INSTANTIATE
7 AppData PDU_AppData.Type is SSRModeSType
8 if not SEARCH Protocol~target$id :Hash=hashIAD42
9 Tree.targetId = Protocol~target$id
10 Tree.category = Protocol~aircraft$category
11 Tree.categoryMaxSpeed = DomainLookUpMax(Tree.

category)
12 Tree.catgeoryMinSpeed = DomainLookupMin(Tree.

category)
13 Key = Protocol~target$id
14 HashInstantiate = hashIAD42
15 endif
16
17 EVALUATE
18 AppData PDU_AppData.Type is SSRModeSType
19 HashBind = hashIAD42
20 if SEARCH Protocol~target$id :Hash=hashIAD42
21 Tree.category = Protocol~aircraft$category
22 Tree.speed = Protocol~groundspeed
23 EVAL Protocol~target$id , Protocol~speed
24 endif
25
26 DESTROY
27 if SEARCH Protocol~target$id :Hash=hashIAD42
28 Key=Protocol~target$id
29 HashBind = hashIAD42
30 endif
31 END �
Listing 4: Step 5 - IBED DSL Code for Violation of the
Physical Law.

6 EVALUATION AND RESULTS
The evaluation shows that constraint engine can be extended to
handling not only network constraints but application data con-
straints as well. It also shows that the ontology and SPARQL can
be used to evaluate potential threats in the domain/ It shows that
we can implement the SPARQL queries in the constraint engine
and enforce them at the network level. In addition to the constraint
detecting the violation of physical laws, we applied the process to
the other two threats identified in section 3.

6.1 Evaluation of SPARQL
All three threats were expressed as SPARQL queries on our ATC
ontology. We generated four data sets. One contains only the clean
data from a Euroscope scenario file. We created three scripts that
injected malicious data for each of the three threats. Three graph
databases were created, each with one set of data. Each query was
run against the clean graph database and the malicious data set for
that threat. The result of the SPARQL queries is shown in table 3.

In one case, the SPARQL query successfully detected the mali-
cious data, and processed the clean data without incident. In the
ghost plane attack scenario, the range of the primary radar was set
to the range used by EuroScope. However, this ended up with an
edge condition in which an aircraft came into range and broadcast

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

Threat Normal Trace Attack Trace
Physical Law Violation No alerts Correct detection
Ghost Plane 1 false alert Correct detection
Spoofed Location 2 false alerts Correct detection

Table 3: SPARQL Query Results.

an ADS-B message before the simulated radar detected the aircraft.
Revising the query to use a slightly smaller range of radar to en-
sure that the radar picks up a legitimate aircraft before an ADS-B
message is considered malicious.

The third attack scenario is that the position of an existing air-
craft is altered by immediately following a legitimate ADS-B mes-
sage with a malicious ADS-B message with a false position. This
query detects this attack by examining the period between ADS-B
messages. However, there were two cases in the clean scenario
where EuroScope generated legitimate updates that were closer
than threshold used in the query.

6.2 Evaluation of IDS
The results of evaluation the application data constraints with the
constraint engine are summarized in figure 4. The ghost plane and
the violation of the physical law constraints have the same results
as the SPARQL queries. The IBED DSL features needed for the
spoofed location query were not available, even using the approach
of using a placeholder and manually correcting the generated code.

Threat Normal Trace Attack Trace
Physical Law Violation No alerts Correct detection
Ghost Plane 1 Case Correct detection
Spoofed Location Not complete Not Complete

Table 4: IBED DSL Results.

One of the contributions of this research is to identify the exten-
sions required in the IBED DSL to implement application domain
data constraints. The two needed extensions are:

• All three application data constraints rely on external infor-
mation to be evaluated successfully, such as the ‘range of a
radar station’. But this information is not available in any
packet. We added domain functions such as DomainLookup-
Max in line 11 of listing4. These allow facts about the real
world to be added to constraints.

• The current IBED DSL does not support a constraint on a
single packet, as most single packet issues at the network
level are handled in the protocol parser. We constraints on
single packets that aren’t limited to the parsing of the packet.

• The existing IBED DSL implementation has a limited num-
ber of logical and relational operators, and no arithmetic
operators. These are needed if more general constraints are
to be implemented. We generalized the constraint trees to
include arithmetic, logical and relational operators.

7 RELATEDWORK
There are three areas of related research. The first is redundancy
checking and correlation of data. The second is related research in

intrusion detection, first order logic and data integrity. The last is
work related to the types of threats we investigate.

7.1 Redundancy Checking
Co-relating available information is one of strategies that can be
effective in the existing security of any system. This co-relation can
be done between different types of data, between data of different
systems or between data from different layers of same system.
Choo et al. [5] propose that the cyber attacks are ‘coordinated’ and
are ‘interconnected’. The main defense of such attacks requires
an infrastructure that includes data analytics. Choo et al. suggest
that a research challenge is the intelligent analysis of data that is
collected from different layers of network security.

Every detection system has the potential to raise false alarm.
Ducharme [10] notes that most of the time the consequences of
false alarms are resources and time. He notes that to avoid the
consequences, it is important to understand the false alarms and be
able to co-relate them. Eschelbeck et al. [12] note the importance of
the assessment and correlation of data between different systems.
They identify the need for correlation of information and used a
correlation engine with Snort IDS to reduce and validate alerts.

Parnas et al. [28] suggest a “triple redundancy" approach for
safety critical systems. The main system of any critical system must
perform reliably. Any backup systems must be independent. Parnas
et al. suggest that double or triple failure in a disjoint infrastructure
is less likely. We do not claim data integrity checking in the IDS is
a replacement for data integrity checking in command and control
systems such as ATC. Using an IDS to validate application data
adds redundancy and more confidence in the overall security of the
system.

7.2 Related IDS
Many organizations use security information and event manage-
ment (SIEM) systems to get an overall view of the information
security activity and enforce data integrity [24]. In general, SIEM
systems are designed to process security events which are gen-
erated by network security solutions [3]. SIEM systems gather a
considerable amount of data for analysis from different sources in
various formats. SIEM has many advantages, but there are limita-
tions. To make any sense of this data it must be converted into a
consistent format [35]. Security reports and dashboards provided
by SIEM systems are useful for security staff and management,
because they show several security metrics and the general state of
information security within organizations [25].

But these reports, logs and alerts contain a significant amount
of data. SIEM rules are used to correlate this information. Majeed
et al. [20] suggest that many SIEM systems are incapable of giving
the status of these rules in real time. Our approach may be adapted
to allow critical rules to be validated in real time.

Andrea et al. [4] investigate using an IDS that represent the states
of the system using a rules language for Industrial Control Systems
(ICS). Like our approach they work with a domain specific network.
We focus on data in command and control systems such as ATC.
Elfaki et al. [11] also based their intelligent rules on first order logic
to better detect inconsistencies. We use FOL for representation of
our threats, which are then transformed to IBED DSL constraints.

An Approach to Represent and Transform Application-Specific Constraints for an Intrusion Detection System CASCON ’20, Nov 10–13, 2020, Toronto, Canada

Ghost Plane

DSL
Application

Constraints

Constraint

Engine

Network

Constraints

All ConstraintsPhysical

Law DSL

Spoof DSL

Combined

Alerts

1
2

Figure 7: Contributions

7.3 Threats and Attacks
Costin et al. [7] in Ghost in the Air identify security issues in ADS-B
and show that attacks on the ADS-B are not only possible, but
easy. In ATC systems, data provided by ADS-B is trusted and lacks
security as a key feature [7] [33]. Costin et al. emphasize adding
the most basics authentications. Our physical law violation threat
model is a demonstration of the lack of such basic authentication.
Abnormal behaviour can be indicative of something that needs to
be further investigated.

Ray et al. [32] propose using an ontology for threat models.
They suggest starting by familiarizing oneself with the domain
by interviewing domain experts before building a threat model.
Balduzzi et al. [2] provided a categorization of attacks on AIS. AIS
and ADS-B share many of the same vulnerabilities and threats.

8 CONCLUSIONS AND FUTUREWORK
In this research we extend an existing constraint based IDS to
identify data integrity at the application level. We demonstrate
the extensions in the domain of air traffic control. Figure 7 is a
representation of the contributions. We specify a set of transfor-
mations from natural language to SPARQL queries to IBED DSL
constraints, that can be used to generate a custom IDS which are
shown on the left of figure 7. We test our proposed application
data constraints with our current IDS framework. The evaluation
demonstrates some elements of the DSL and generator that must be
extended to fully support application data constraints as shown in
region 2 of Figure 7. We show that with the extensions, application
data constraints can use the same life-cycle as our network con-
straints. We propose and present a set of application domain data
constraints for the ATC domain, using the same auto-generated
framework.

The future work for our research will focus on extensions to
the SCL and the IBED DSL. More application data constraints
should be evaluated and the work on mutli-packets constraint will
be completed. The IDS framework is currently generated semi-
automatically. The extensions identified in this research are in the
process of being integrated into the constraint engine generator.

The IDS is now capable of working on ensuring integrity in two
different aspects of a system, network and data. One interesting

dimension would be to explore defining constraints on another
aspect or working layer, to see if that adds further security.

In conclusion, some application domain data can be evaluated
at the network level. Industrial control systems and command and
control applications are often complex, and while security is a criti-
cal component, it is one of many components for critical systems.
Our approach adds a redundant check of the integrity of application
data in the intrusion detection system, where the sole focus is on
the system security.

We also provide an example of using the ATOM process to use
an Ontology to evaluate application integrity in the air traffic con-
trol domain using queries. We then transform them to a low level
constraint representation that can be validated in real time.

9 ACKNOWLEDGMENTS
We would like to acknowledge funding from the Department of
National Defense.

REFERENCES
[1] ISO/IEC JTC 1. 1994. ISO/IEC 7498-1:1994 Information technology – Open Systems

Interconnection – Basic Reference Model: The Basic Model. International Standards
Organization, Geneva, Switzerland.

[2] Marco Balduzzi, Alessandro Pasta, and Kyle Wilhoit. 2014. A Security Evaluation
of AIS Automated Identification System. In Proceedings of the 30th Annual Com-
puter Security Applications Conference (NewOrleans, Louisiana, USA) (ACSAC ’14).
ACM, New York, NY, USA, 436–445. https://doi.org/10.1145/2664243.2664257

[3] S. Bhatt, P. K. Manadhata, and L. Zomlot. 2014. The operational role of security
information and event management systems. IEEE Security & Privacy 12 (2014),
35 – 41.

[4] Andrea Carcano, Igor Nai Fovino, Marcelo Masera, and Alberto Trombetta. 2010.
State-Based Network Intrusion Detection Systems for SCADA Protocols: A Proof
of Concept. In Critical Information Infrastructures Security, Erich Rome and Robin
Bloomfield (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 138–150.

[5] Kim-Kwang Raymond Choo and Ali Dehghantanha. 2018. Introduction to the
Minitrack on Cyber Threat Intelligence and Analytics: A Conceptual Three-
Pronged Approach and Future Research Agenda. In Proceedings of the 51st Hawaii
International Conference on System Sciences. 5521 – 5523. https://doi.org/10.
24251/HICSS.2018.688

[6] James R. Cordy. 2006. The TXL source transformation language. Science of
Computer Programming 61, 3 (2006), 190 – 210. https://doi.org/10.1016/j.scico.
2006.04.002 Special Issue on The Fourth Workshop on Language Descriptions,
Tools, and Applications (LDTA âĂŹ04).

[7] Andrei Costin and Aurélien Francillon. 2012. Ghost in the Air(Traffic): On
insecurity of ADS-B protocol and practical attacks on ADS-B devices. In BLACK-
HAT 2012, July 21-26, 2012, Las Vegas, NV, USA. Las Vegas, UNITED STATES.
http://www.eurecom.fr/publication/3788

[8] Gergely Csernak. [n.d.]. EuroScope User Guide, for Version 3.0a. https://www.
euroscope.hu/documents/EuroScopeUsersGuide30.pdf. Accessed: 2019-10-29.

https://doi.org/10.1145/2664243.2664257
https://doi.org/10.24251/HICSS.2018.688
https://doi.org/10.24251/HICSS.2018.688
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1016/j.scico.2006.04.002
http://www.eurecom.fr/publication/3788
 https://www.euroscope.hu/documents/EuroScopeUsersGuide30.pdf
 https://www.euroscope.hu/documents/EuroScopeUsersGuide30.pdf

CASCON ’20, Nov 10–13, 2020, Toronto, Canada Babar et al.

[9] R. De Cerchio and C. Riley. 2012. Aircraft systems cyber security. In 2012 Inte-
grated Communications, Navigation and Surveillance Conference. 1–12. https:
//doi.org/10.1109/ICNSurv.2012.6218454

[10] É. Ducharme. 2017. Détection d’intrusion à l’aide d’un système expert basé sur
l’ontologie. Master’s thesis. École Polytechnique de Montréal.

[11] Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho.
2009. Investigating Inconsistency Detection as a Validation Operation in Software
Product Line. Springer Berlin Heidelberg, Berlin, Heidelberg, 159–168. https:
//doi.org/10.1007/978-3-642-05441-9_14

[12] Gerhard Eschelbeck and Michael Krieger. 2003. Eliminating noise from intrusion
detection systems. Information Security Technical Report 8 (04 2003), 26 – 33.
https://doi.org/10.1016/S1363-4127(03)00004-9

[13] Object Management Group. [n.d.]. The Real-time Publish-Subscribe Protocol
(RTPS) DDS Interoperability Wire Protocol Specification. https://www.omg.org/
spec/DDSI-RTPS/2.3/Beta1/PDF. Accessed: 2019-05-22.

[14] RDF Working Group. 2014. Resource Description Framework (RDF). https:
//www.w3.org/RDF/. (2014).

[15] SPARQL Working Group. 2008. SPARQL Query Language for RDF. https://www.
w3.org/TR/rdf-sparql-query/. (2008). Accessed: 2020-06-12.

[16] MD Siam Hasan, Thomas Dean, Fahim T. Imam, Francisco Garcia, Sylvain P.
Leblanc, and Mohammad Zulkernine. 2017. A Constraint-based Intrusion Detec-
tion System. In Proceedings of the Fifth European Conference on the Engineering
of Computer-Based Systems (Larnaca, Cyprus) (ECBS ’17). ACM, New York, NY,
USA, Article 12, 10 pages. https://doi.org/10.1145/3123779.3123812

[17] M. S. Hasan, A. ElShakankiry, T. Dean, and M. Zulkernine. 2016. Intrusion
detection in a private network by satisfying constraints. In 2016 14th Annual
Conference on Privacy, Security and Trust (PST) (Aukland, New Zealand). 623–628.
https://doi.org/10.1109/PST.2016.7906997

[18] Fahim Imam. 2020. Specifying Constraints in SCL5 for Intrusion Detection. Tech-
nical Report. http://pyxis.ece.queensu.ca/papers/compasstr20-1.pdf/ [Online;
Accessed: 2020.02.13].

[19] Legal Information Institute. [n.d.]. Aircraft approach category. https://www.
law.cornell.edu/cfr/text/14/97.3 [Online; accessed 14-June-2020].

[20] Abdul Majeed, Raihan ur Rasool, Farooq Ahmad, Masoom Alam, and Nadeem
Javaid. 2019. Near-miss situation based visual analysis of SIEM rules for real time
network security monitoring. Journal of Ambient Intelligence and Humanized
Computing 10, 4 (01 Apr 2019), 1509–1526. https://doi.org/10.1007/s12652-018-
0936-7

[21] Simon Malenfant-Corriveau. 2017. PROPOSAL FOR A METHOD OF DEVELOP-
ING ONTOLOGY FOR A SYSTEM EXPERT IN SECURITY. Master’s thesis. École
Polytechnique de Montréal.

[22] Mohsen Riahi Manesh and Maima Kaabouch. 2017. Analysis of Vulnerabil-
ities, Attacks, Countermeasures and Overall Risk of the Automatic Depen-
dent Surveillance-Broadcast (ADS-B) System. https://doi.org/10.1016/j.ijcip.
2017.10.002. Int. J. Crit. Infrastruct. Prot. 19, C (Dec. 2017), 16âĂŞ31. https:
//doi.org/10.1016/j.ijcip.2017.10.002

[23] Sylvain Marquis, Thomas R. Dean, and Scott Knight. 2005. SCL: A Language for
Security Testing of Network Applications. In Proceedings of the 2005 Conference
of the Centre for Advanced Studies on Collaborative Research (Toranto, Ontario,
Canada) (CASCON âĂŹ05). IBM Press, 155âĂŞ164.

[24] Pal Michelberger and Sandor Dombora. 2016. A Possible Tool for Development
of Information Security- Siem System. Ekonomika, Journal for Economic Theory
and Practice and Social Issues 1350-2019-2051 (2016). https://doi.org/10.22004/ag.
econ.288703

[25] Raydel Montesino, Stefan Fenz, and Walter Baluja GarcÃŋa. 2012. SIEM-based
framework for security controls automation. Information Management & Com-
puter Security 20 (10 2012). https://doi.org/10.1108/09685221211267639

[26] L.-P Morel. 2017. Using Ontologies to Detect Anomalies in the Sky. Master’s thesis.
[27] Ontotext. 2019. What is SPARQL. https://www.ontotext.com/knowledgehub/

fundamentals/what-is-sparql/. (2019). Accessed: 2020-02-13.
[28] David Parnas, Jan Madey, and G. Asmis. 1991. Assessment of safety-critical

software in nuclear power plants. Nuclear Safety 32 (04 1991).
[29] CFR Part. 91. Automatic Dependent Surveillance–Broadcast (ADS–B) Out Per-

formance Requirements to Support Air Traffic Control (ATC) Service. Final Rule
91 (91).

[30] Y. Raimond and G. Schreiber. 2014. RDF 1.1 primer. http://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140624/. (2014).

[31] Mohamed Sami Rakha, Fahim T. Imam, and Thomas R. Dean. 2019. Generating a
Real-Time Constraint Engine for Network Protocols. In 12th IFIP International
Conference on Information Security Theory and Practice (WISTP) (Information
Security Theory and Practice, Vol. LNCS-11469), Olivier Blazy and Chan Yeob
Yeun (Eds.). Springer International Publishing, Brussels, Belgium, 44–60. https:
//doi.org/10.1007/978-3-030-20074-9_5 Part 2: Real World.

[32] Cyril Ray, Romain Gallen, Clement Iphar, Aldo Napoli, and Alain Boujou. 2015.
DeAIS project: Detection of AIS spoofing and resulting risks. IEEE, OCEANS 2015
- Genova, Genoa, Italy. https://doi.org/10.1109/OCEANS-Genova.2015.7271729

[33] SC-186. 2009. DO-282B, MinimumOperational Performance Standards for Universal
Access Transceiver (UAT) Automatic Dependent Surveillance-Broadcast (ADS-B).
Technical Report. 1150 18th NW, Suite 910 Washington, DC 20036 USA.

[34] Lucio Vismari and JoÃčo Junior. 2011. A safety assessment methodology applied
to CNS/ATM-based air traffic control system. Reliability Engineering & System
Safety - RELIAB ENG SYST SAFETY 96 (07 2011), 727–738. https://doi.org/10.
1016/j.ress.2011.02.007

[35] Peter Zegzhda, Dmitry Zegzhda, MaximKalinin, Alexander Pechenkin, Alexander
Minin, and Daria Lavrova. 2016. Safe Integration of SIEM Systems with Internet
of Things: Data Aggregation, Integrity Control, and Bioinspired Safe Routing.
In Proceedings of the 9th International Conference on Security of Information and
Networks (Newark, NJ, USA) (SIN ’16). ACM, New York, NY, USA, 81–87. https:
//doi.org/10.1145/2947626.2947639

https://doi.org/10.1109/ICNSurv.2012.6218454
https://doi.org/10.1109/ICNSurv.2012.6218454
https://doi.org/10.1007/978-3-642-05441-9_14
https://doi.org/10.1007/978-3-642-05441-9_14
https://doi.org/10.1016/S1363-4127(03)00004-9
 https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
 https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1145/3123779.3123812
https://doi.org/10.1109/PST.2016.7906997
http://pyxis.ece.queensu.ca/papers/compasstr20-1.pdf/
https://www.law.cornell.edu/cfr/text/14/97.3
https://www.law.cornell.edu/cfr/text/14/97.3
https://doi.org/10.1007/s12652-018-0936-7
https://doi.org/10.1007/s12652-018-0936-7
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.1016/j.ijcip.2017.10.002
https://doi.org/10.22004/ag.econ.288703
https://doi.org/10.22004/ag.econ.288703
https://doi.org/10.1108/09685221211267639
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://doi.org/10.1007/978-3-030-20074-9_5
https://doi.org/10.1007/978-3-030-20074-9_5
https://doi.org/10.1109/OCEANS-Genova.2015.7271729
https://doi.org/10.1016/j.ress.2011.02.007
https://doi.org/10.1016/j.ress.2011.02.007
https://doi.org/10.1145/2947626.2947639
https://doi.org/10.1145/2947626.2947639

	Abstract
	1 Introduction
	2 Background
	2.1 The Intrusion Detection System
	2.2 The ATC Simulation
	2.3 The ATC Ontology
	2.4 IDS and the ATC Simulator Extensions

	3 Threat Scenarios
	4 Transformation Process
	5 Transformation Example
	5.1 Violation of Physical Law

	6 Evaluation and Results
	6.1 Evaluation of SPARQL
	6.2 Evaluation of IDS

	7 Related Work
	7.1 Redundancy Checking
	7.2 Related IDS
	7.3 Threats and Attacks

	8 Conclusions and Future work
	9 Acknowledgments
	References

