An Empirical Evaluation of a Language-Based Security

Testing Technique

Muhammad AboElFotoh and Thomas Dean

Queen’s University
{mha,dean}@Qcs.queensu.ca

Abstract

Security testing of network applications is an
essential task that must be carried out prior
to the release of software to the market. Since
factors such as time-to-market constraints limit
the scope or depth of the testing, it is difficult
to carry out exhaustive testing prior to the re-
lease of the software. As a consequence, flaws
may remain undiscovered by the software ven-
dor, which may be discovered by those of ma-
licious intent. In this paper, we report the re-
sults of an empirical evaluation of applying a
security testing approach and framework, pre-
viously tested in an academic setting, to the
Distributed Relational Database Architecture
(DRDA®) protocol as implemented by the
IBM®DB2®Database for Linux®, Unix®),
and Windows®product.

1 Introduction

The cheap availability of bandwidth has made
global communication and collaboration easier,
but the ease of interaction has also aided those
with malicious intent. Thus the security of net-
work applications is an increasingly important
topic in both academia and industry. Confor-
mance testing of these applications tends to fo-
cus on valid requests and obvious errors.

Copyright © 2009 Muhammad AboElFotoh,
Thomas R. Dean and IBM Canada Ltd. Permission to
copy is hereby granted provided the original copyright
notice is reproduced in copies made.

Ryan Mayor

IBM Canada Ltd.

rmayor@ca.ibm.com

The protocols used by modern network ap-
plications have become languages in their own
right, possessing syntax and semantics. We
view the protocol as a programming language,
and a data exchange between the client and
server as a program. The system to be tested
is viewed as an execution environment for the
program. This opens up a variety of testing
methods that may be used to evaluate the se-
curity of an implementation. Our approach
tests the protocol implementation by violating
the syntax rules and semantics of the protocol.
In our approach, we capture packets, and after
mutating the packets, inject them back into the
network, in order to test the implementation’s
ability to handle erroneous cases. The muta-
tions are based on the semantics of the proto-
col. Our previous work [5, 24, 29, 31, 34] has
successfully applied this mutation approach to
various protocols.

Some of the protocols that we have ex-
pressed using our approach (and tested imple-
mentations of) are X.509 [16, 14], OSPF [25]
and SNMP [2], server message block (SMB)
[21, 20, 9] and Apple file share (AFS) [15].
While all of these protocols are standard in-
ternet protocols, they are all relatively small
protocols, and the servers that implement the
protocols are similarly modest in size.

The goal of the work presented in this paper
was twofold. The first was to evaluate the ap-
proach against a more complex protocol. The
second was to extend the prototype [30] to au-
tomate the test planning phase of the approach.

In this paper we discuss our application

Protoco
Extractor

PDU
Extractor

Protocol
Description

State Dependency Analysis

Protocol
FactBase
PDU
FactBase

Config
File

Previous
Markup/Execute/
Encode

Network

Test
System

Figure 1: System architecture

of the approach to the distributed relational
database architecture protocol (DRDA) [10,
11, 12]. This is a protocol originally developed
by IBM which has been standardized by the
Open Group. It is used as a middle level trans-
port protocol between DB2 clients and servers.
The protocol is a much more complex proto-
col, as it has over 200 rules and hundreds of
element types, which supersedes the number of
rules and element types for the protocols pre-
viously tested using this approach. This makes
DB2, the implementation under test, a much
more complex software application. New re-
leases are also extensively tested before they
are shipped by IBM.

The paper is composed of 7 sections. In Sec-
tion 2 we give a short overview of our testing
framework, as well as a short overview of the
DRDA protocol. Section 3 discusses the experi-
mental setup and the encoding of DRDA in our
specification language. Section 4 discusses the
extensions to the framework for DRDA. Sec-
tion 5 presents the results of the DRDA tests.
Section 6 discusses some related work, and the
paper is concluded in Section 7.

2 Background

Figure 1 shows the system architecture of our
prototype protocol tester. It is implemented
in a mixture of Java®, C, TXL [4] and grok
[13]. A network listener is used to capture
the packets that form the messages (Protocol
Data Units or PDUs) that are exchanged by
the client and server (lower left). This is done
while some set of tests is run such as confor-
mance tests, or regression tests or some other
test suite. The protocol is specified in the
SCL language [24], shown in the upper left.
The SCL language uses XML markup to add
constraints to the Abstract Syntax Notation
dot One (ASN.1) [6] protocol description stan-
dard. The protocol description is used to de-
code the messages into a textual form. The
protocol description is also transformed into a
fact base representation giving both the struc-
ture and the constraints in TA form [27]. A
set of facts representing the captured PDUs is
also extracted. As part of the extraction pro-
cess, each field in the captured PDUs is given
a unique name which serves as a link between
the fields and the facts. Both the PDUs and
the protocol description are used by a mutation

Length DDMID Format
(2 bytes) DO'h (1 byte)
(1 byte)

Correlation
Identifier
(2 bytes)

... data ...

Figure 2: A single Data Stream Structure (DSS)

engine which checks to see which constraints
in the protocol description are present in the
captured PDUs and uses that information to
generate variants of the PDUs that violate the
constraints. In the existing prototype, while
the low level mutation process is automated,
the planning phase based on the protocol de-
scription was still largely manual. The mod-
ified PDUs are then sent to the test system
to see if they cause any faults in the system.
If the system engages in unexpected behaviour
as a result of the fault injection, such as unex-
pectedly shutting down or crashing, then the
modified PDUs can be used by an attacker to
perform a denial-of-service (DoS) attack, or, in
some cases, compromise the system. If the mu-
tated message is not the first message in the
sequence, the previous messages must be re-
transmitted to place the test system into the
same state. The fact bases extracted from the
PDUs are analyzed as part of state dependency
analysis to create a script which provides the
injector with information about which fields of
the messages must be modified to maintain any
state dependencies of the protocol.

DRDA describes the contents of all the com-
mands, data objects and replies that flow be-
tween the client and the server. DRDA is
built on the Distributed Data Management
(DDM) architecture, which it uses as the trans-
fer syntax for the exchange of DRDA messages.
DRDA messages are carried in one of three
data stream structure (DSS) messages, namely
Request DSS, Object DSS or Reply DSS. A
DRDA PDU can consist of a single DSS, or a
sequence of DSS messages. More than one mes-
sage can be pipelined into a single PDU, and
more that one DSS might be used by a single
command or reply. The format of a single DSS
is shown in Figure 2.

The data carried inside these structures can
be one or more commands, objects or replies to

commands. The format of a single command/
object/reply is shown in figure 3. The length
fields in the structures shown in figure 2 and
3 specify the total length of the structure, in-
cluding the 2-byte length field. In a DSS, the
length field is followed by a 1-byte DDM identi-
fier ("DO’ h). The identifier is then followed by
a 1-byte integer field, the format field, which
specifies whether the message is a command or
an object or a reply. Following the format field,
is the correlation identifier 2-byte integer field
which is used to identify structures which be-
long to particular commands and replies. The
code point field in Figure 3 is used to specify
the type of a message. DRDA has 580 code
points, some of which are specific to the com-
munication protocol, and some of those struc-
tures are of a primitive type, that can be di-
rectly expressed using SCL’s primitive types.

3 Experimental Setup

The system under test was DB2 Open Beta
Viper version 9.5. The software was installed
on a dualcore machine with 1 GB of RAM, with
an instance of DB2 acting as the server and lis-
tening on TCP/IP socket port 50000. The DB2
client, also on the same machine, using another
instance of DB2, connects to the server via the
loopback interface. The server’s authentication
method was kept on the default settings. Some
of the test sequences were obtained from the
samples included in the evaluation version of
DB2 version 9.5. Others were generated using
custom queries to target specific DRDA mes-
sages. The initial state of the database for each
sequence was backed up, and the injector runs
a shell script after each individual sequence of
PDU is retransmitted, restoring the database
to its original state.

Length
(2 bytes)

Codepoint
(2 bytes)

... data ...

Figure 3: Command/Object/Reply structure

fieldtypes.fb

constraints.fb

{ bindings.fb

lengthfield.fb Mutation Script
N
AN

postIRG.txl

/N
— / Invalid Range
| binding.txI r |l¢’r'~=—‘||:K5-t’(||‘> Generator

Mutation Scripter

PDU.fb

Markup Engine

Shell Script

Invalid.fb

Figure 4: Test planning architecture

4 Framework Extensions

Several omissions in the existing implementa-
tion of our testing framework were uncovered
during this research. Several of these were el-
ements of the framework that had been de-
signed, but not yet implemented, while others
were new issues. This section examines some of
the extensions made as part of the experiment.

4.1 Test planning

The link between the protocol description and
the mutator was still manual in the prototype.
As part of this project, a prototype test plan-
ner was completed. This was the most signifi-
cant extension to the framework as part of the
project. The low level markup and execution
engine of the mutator uses a shell script that
passes a list of the unique names of the fields
that are to be mutated, and the specific mu-
tations that are to be performed. Figure 4
shows the new architecture of the Test planner.
It consists of five steps: pre-binding, binding,
planning, invalid range generation and script
generation.

4.1.1 Pre-Binding

The pre-binding is part of the PDU fact ex-
traction process. It generates unique names
for each of the fields, and extracts from the
protocol fact base the information about any
constraints that apply to fields that are in the
particular sequence of PDUs that are being mu-
tated.

4.1.2 Binding

The binding phase takes the information that
was assembled by the pre-binding step matches
the unique names and constraints. It generates
a simple set of variables which are substituted
into the constraints and unified with the unique
names. The constraints are converted into sim-
ple arithmetic/ logical expressions and classi-
fied as one of three types, length, value or car-
dinality. Figure 5 shows a subset of the output
of the binding phase for one of the tests. In the
figure, there are three constraints (lines start-
ing with Expr). Two are length constraints,
the other is a value constraint. The other lines,
starting with BoundTo, bind unique names of
PDU fields to the variables in the expressions.

BoundTo Rgsdss_cmd x4

BoundTo
Rqgsdss_header_DssHeader_lenField
x5

Expr "x4 = ((x5) - 6)" LENGTH
BoundTo

RDBCMM_llcp_LL Cp_codePoint x6
Expr "x6 == 8206" VALUE

BoundTo RDBCMM_rdbnam x7
BoundTo
RDBCMM_llcp_LLCp_lenField x8
Expr "x7 = ((x8) - 4)" LENGTH

Figure 5: Sample output of binding

4.1.3 Invalid Range

The output of the binding stage is fed to a
TXL script which prepares the value constraint
equations for parsing by the Invalid Range
Generator. The Invalid Range generator is a
C++ program that parses the expressions and
inverts the range expressions. For example, ex-
pression x1>5 and x1!=7 becomes x1<=5 or
x1==7. The output of the invalid range gen-
erator is a fact base which contains a table of
the fields’ variables and a corresponding value
which violates the range expression. As sug-
gested by Beizer [1], the default behaviour of
the framework is to generate cases with sin-
gle mutations. For multiple mutations per test
case, the framework user has to instruct the
framework to generate multiple mutations per
test case. The result of these two steps is a se-
quence of mutations to be performed. Figure
6 shows a sample of the output of these two
steps. All three of these instructions are to set
particular fields to particular values.

4.2 Mutation Script Generation

This stage, the final stage in the test plan-
ning process, takes as input the binding fact
base from the binding stage; the field types fact
base, which contains all the fields in the proto-
col description, with their corresponding types;
the length field fact base, which contains all the
affecter and affected fields for each length con-
straint in the protocol description; the output
from the Invalid Range Generation phase, as
well a script which describes the overall muta-

setInvalidValue all

setValue "MAXVAL" where type like INT

setValue "0" where type like OCTET_STRING

setValue "MAXVAL" where type like OCTET_STRING
remove all

permute "0" where type like SEQUENCE

permute "0" where type like SET

Figure 6: Default Mutation Script

tion strategy. This script can be modified by
the framework user for customized mutation
strategies. Figure 7 shows a single mutation
shell script command.

4.3 Markup Engine

In the previous versions of the framework, there
was no handling of length fields as it was not re-
quired. However, the DRDA protocol messages
do have a length field which holds the message
length. If the creation of a test case involved
an insertion or deletion of a DRDA child el-
ement carried by a DRDA message, then the
length field value of the parent DRDA mes-
sages have to be modified to account for the
insertion/deletion of that child element. Our
goal was to generate a single insert/delete field
mutation. Leaving any parent structures’ field
values’ unfixed would mistakenly result in two
mutations, a length field value mutation as well
as the insert/delete field mutation.

Figure 8 shows an example of the length
fields affected by an insert/delete field muta-
tion. The DRDA PDU shown contains two
DSSs, the mutation is in the second DSS in a
child message structure. The numbers proced-
ing the element label indicate the "level” of the
element. For example, Affected L.F. (length
field) 2 is a top-level length field for DSS 2.
Affected L.F. 2.1 is an affected length field of
a child of DSS 2, and Affected L.F. 2.1.1 is an
affected length field of a grandchild of DSS 2.

".txlll Il$1ll ll$2ll II_OII ll$3-t03" ll_II "——unlquefieldid"

"sendPK13_PDU_seqOfDss_seqOfDss_PDU_1_seqOfDss_Raqsdss_header_DssHeader_
constant” "--error” "ErrASN" "setASNValue" "MAXVAL"

Figure 7: Shell script line from Mutation Scripter

0

- N i Q
o ol e “w L
[0) i - - 9
[T~ o 0
c 8 24 o= 9}
= = 0 0N)
o)} Q Q Q S
S D > £ ol
- Q

9 b < < e
=

DSS 1 DSS2

Figure 8: Insert/Delete mutation example

4.4 Constraints

Since most of the protocols previously handled
did not have very complex constraints, the con-
straint language was also somewhat simplistic.
As a result, it was not able to handle all of the
constraints in the DRDA protocol. In partic-
ular, values of fields were limited to an enu-
meration of values, or range of values as shown
in Figure 8. Constraints with multiple ranges
were not supported, nor were multiple fields
supported in the same value constraint. Figure
9 shows an example of one of the constraints
for the Description Error Code (DSCERRCD)
structure in DRDA. The constraint describes
three ranges of values (1..7, 11..13, 32..26) as
well as the individual values 21, 22, 41, and
42. The syntax length constraints also had to
be extended to include conditions and multiple
fields. In particular there is one structure type
where an array of fields has a default length
if one field has the value 66, or has a length
given by another field if the first field has a
value other than 66. Optional elements, while
available in ASN.1, were not fully implemented
in the existing prototype and had to be added.

4.5 Decoder

In previous protocols, all PDUs fit into single
packets simplifying the decoder. Several of the
PDUs in the DRDA packets spanned multiple
packets. The network listener generates a sin-
gle dump file containing all of the packets. The
new decoder creates a textual representation
of the network traffic captured, a Packet De-
tail Markup Language (PDML) file from the
binary dump file. The PDML file is then fed
into a utility program, called the Payload Ex-
tractor, which extracts the payload from the
PDML file, and constructs the packet sequence,
one binary file per packet. A shell script uses
the PacketDecoder, a java program which can
decode single binary PDUs using the protocol
description, to decode the first packet file, if
successful then the script moves on to the next
packet. However, if the packet cannot be de-
coded then the packet is concatenated with the
next packet in the sequence, and then decoded.
If successful, then these two consecutive pack-
ets are stored as one binary PDU in one file. If
the packet which is yet to be decoded has been
concatenated with all the packets proceeding
this packet in the sequence, and still cannot be
decoded, then the framework throws an error.
Each PDU file is appropriately named accord-
ing to the PDUs position in the sequence. A
list of the packet assembly is generated for later
use by the injector. The decoder then trans-
lates each PDU to its textual form as had been
done for previous protocols. While the imple-
mentations of the protocols previously tested
uses sets of items, they did not use the SET
construct for records. This construct describes
a heterogeneous list of fields, but allows the or-
der to change. DRDA uses this construct for
some of the message classes, and thus the de-
coder was extended to support this construct.

4.6 Injector

Since the tests involved commands that pro-
duced side effects in the server, a means to re-
store the server to the initial state was needed.
The injector was extended to run an exter-
nal command to return the database to the
known initial state. The external command
used to restore the database to a known state
was an invocation of a shell script which re-
stored a backed up version of the DB2 in-
stance’s 'db2instX’ directory and the DB2 in-
stance’s ’sqllib’ directory.

Since some PDUs span more than one net-
work packet, the injector must separate mu-
tated request PDUs before retransmission and
reassemble response PDUs as they are received.
To maintain the protocol independence of the
injector, the decoder provides a list that can
be used for this purpose. The injector was also
refactored to separate the state dependency
rewrites from the injection.

5 Test Results

A total of 26 test sequences were run. The
shortest test sequence contained 6 PDUs, while
the longest sequence was 127 PDUs. The av-
erage sequence length was 33 PDUs. The min-
imum number of mutant PDUs for a sequence
was 121 mutations, The maximum number of
mutant PDUs was 6874 and the average num-
ber of mutants for a sequence was 1654.

The average time to generate a set of test
cases was 8 minutes, and the average total test
time was 83 minutes. Details of the test results
are shown in Table 1.

As of DRDA version 3, there are 21 DDM
Command Objects and 22 DDM Reply Ob-
jects and Messages used by DRDA [12]. Of
the 21 DDM Command Objects, 18 were de-
scribed. The remaining three DDM Command
Objects SYNCCTL, SYNCRSY and DRPPKG
were not described as they were not encoun-
tered throughout the testing phase. Of the
22 DDM Reply Objects and Messages, 19
were described. The Sync point control Reply
Data (SYNCCRD), the Sync point Log (SYN-
CLOG), and the Sync point Resynchronization
Reply Data (SYNCRRD) codepoints (message

types) were not described as they were not en-
countered throughout the testing.

Two faults in the server were found by our
tests. One was a previously reported fault, the
other was a new fault. The new fault was a
security fault that crashed the DB2 server in-
stance, resulting in a Denial-of-Service (DoS).
The fault has been remedied and has been re-
leased as part of a scheduled service patch for
the affected version of the server.

Seq# Length # of | Gen- Run
(# of | mutant | eration | time
PDUs) PDUs time (mins)

(mins)

1 19 1018 6 72

2 8 6874 39 275

3 7 268 1 13

4 7 889 5 42

5 7 121 1 6

6 14 1266 6 56

7 7 121 1 6

8 11 247 1 11

9 44 4413 23 207

10 11 724 4 32

11 8 700 4 28

12 26 1056 6 90

13 7 764 4 36

14 68 1836 9 190

15 26 1368 8 117

16 40 696 4 33

17 64 1200 6 124

18 125 3052 11 71

19 127 3924 14 91

20 44 1322 7 62

21 35 1706 9 80

22 115 3211 11 74

23 11 706 4 26

24 6 738 4 31

25 14 632 3 28

26 25 4155 24 354

Table 1: Test Results

6 Related Work

Other methods have also been used to test state
based protocols. One approach is to model the
protocol using automata based approaches [22,
23]. However this is a heavy weight solution in
that the interpreted state machine is essentially
a fully functional client. Approaches mixing
abstract specifications such as grammars and
code are also possible [19, 18, 28, 32]. However
what is common to all of these approaches is
that the state space of the server (or client)

must be specified in some way.

The PROTOS project [18] at Oulu Univer-
sity uses a protocol grammar using higher order
attribute grammars to generate variant PDUs.
The grammar specifies the possible PDUs right
down to the values of fields. The grammar
is modified using a script to allow the desired
errors and then a walker walks the grammar
tree, automatically generating the PDUs and
analyzing responses. The higher ordered at-
tribute grammar actions are custom written
Java routines. They are triggered when the
walker reaches specific grammar nodes. Exam-
ples of actions include copying values from re-
sult PDUs to client PDUs (including arbitrary
computation such as password encryption) and
computing checksums of PDUs.

The PROTOS approach was extended at
Cisco [33, 32] This approach uses a user-defined
external callback routine. This routine is cus-
tom written for each protocol. It is used to
verify the return PDUs and make correspond-
ing changes to the test PDUs.

Recent work [17] by Jing et al. has applied
an [SO testing language, Testing and Test Con-
trol Notation version 3 (TTCN-3) to mutation
testing, specifically against the OSPF protocol.
TTCN-3 is a test specification language that
includes the ability to model the state tran-
sitions that the implementation may undergo
and any changes that must be made to the test
data. Thus it is capable of modeling our ap-
proach. In addition, they model the verifica-
tion by adding a forced reset to a known ini-
tial state. This would be similar to sending a
DRDA interrupt command. The advantage of
our approach is that we need not describe the
entire state model, only the trace dependencies
of the protocol.

While the general technique is similar, our
approach is different. We capture a valid set of
data by sniffing the network and transforming
it to generate alternate PDUs. We also are
working on automatically generating the test
plans based on the syntax and semantics of the
protocol without manual intervention.

The mutation technique can be thought of as
a variation of Syntax Testing [1], Model-Based
Testing [7, 8] and Random Testing (Fuzzing)
[3, 26]. In the Syntax Testing approach, syntax
and semantic errors are intentionally made to

produce unexpected variations in the protocol’s
messages to attempt to expose vulnerabilities.
Syntax Testing can be considered a subset of
Model- Based Testing. Other recognized areas
of model based testing include test generation
by theorem proving, constraint logic program-
ming, model checking and symbolic execution.

We share the mutation of input test data
with the random testing approach and many of
the techniques in our syllabus of testing strate-
gies are based on random testing. However,
we use the linguistic model to plan the test
strategy and to better determine where ran-
dom testing is best applied, and we do not limit
the applicable test strategies to randomizing se-
lected fields.

7 Conclusions

We have shown that our approach can scale to
handle protocols such as DRDA. A single stu-
dent was able to describe 200 out of 580 mes-
sage element types over eight months while at
the same time extending the testing framework.
The description and extended framework en-
abled us to run a total of 26 tests, generating
a total of 27925 mutants. Two software defects
were found, one of which was new. The few de-
fects is not surprising given the extent to which
new versions of DB2 are tested before they are
released.

Trademarks

IBM, DB2 and DRDA are registered trade-
marks of International Business Machines Cor-
poration in the United States, other countries,
or both. Java and all Java-based trademarks
are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both.
Other company, product, or service names may
be trademarks or service marks of others.

References
[1] B. Beizer. Software Testing Techniques,

2nd Edition. Van Nostraad Reinhold, New
York, 1990.

2]

[10]

[11]

[12]

J. Case, M. Fedor, M. Schoffstall, and
J. Davin. Simple Network Management
Protocol. Internet RFC 1157, 1990.

T.Y. Chen and F.C. Kuo. Is Adaptive
Random Testing Really Better than Ran-
dom Testing. In Proc 1st Int. Workshop on
Random Testing, pages 64-69, Portland,
USA, July 2006.

J. Cordy. The TXL Source Transforma-
tion Language. Science of Computer Pro-
gramming., 61(3):190-210, August 2006.

T.R. Dean and G.S.N Knight. Apply-
ing Software Transformation Techniques
to Security Testing. International Work-
shop on Software Evolution and Transfor-
mation, Delft, Netherlands, pages 4952—
4952, November 2004.

O. Dubuisson. ASN.1 Communication be-
tween Heterogeneous Systems. Academic
Press, San Diego, 2001.

LK. El-Far and J. Whittaker. Model-based
Software Testing. Encyclopedia on Soft-
ware Engineering, ed. J.J. Marciniak, Wi-
ley, 2001.

E. Farchi, A. Hartman, and S.S. Pinter.
Using a Model-Based Test Generator to
Test for Standard Conformance. IBM Sys-
tems Journal, 41(1):89-110, 2002.

The Open Group. Protocols for X/Open
PC Interworking: SMB, Version 2, ISBN
1872630-45-6. The Open Group, October
1992.

The Open Group. DRDA, Version 3, Vol-
ume 1: Distributed Relational Database
Architecture (DRDA). The Open Group,
January 2004.

The Open Group. DRDA, Version 3, Vol-
ume 2: Formatted Data Object Content
Architecture(FD:OCA). The Open Group,
January 2004.

The Open Group. DRDA, Version 3,
Volume 3: Distributed Data Management
(DDM) Architecture. The Open Group,
January 2004.

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

R. Holt. Introduction to the Grok Lan-
guage, http://plg.uwaterloo.ca/~holt/
papers/grok-intro.doc, last accessed, May
2008.

IETF. Public-Key Infrastructure (X.509),
http://www.ietf.org/html.charters/pkix-
charter.html, 2004., last accessed Aug 10,
2006.

Apple Computer Inc. Apple Filing Proto-
col Programming Guide Version 3.2.

RSA Data Security Inc. PKCS#7-
Cryptographic Message Syntax Standard,
2004.

C Jing, Z Wang, X Shi, X Yin, and J Wu.
Mutation Testing of Protocol Messages
Based on Extended TTCN-3. In Proc 22nd
International Conference on Advanced In-
formation Networking and Applications,
2008.

R. Kaksonen. A Functional Method for
Assessing Protocol Implementation Secu-
rity (Licentiate thesis). Espoo. Technical
Research Centre of Finland, VT'T Publi-
cations 447. ISBN 951-38-5873-1, 2001.

R. Kaksonen, M. Laasko, and A. Takanen.
Vulnerability Analysis of Software through
Syntax Testing, http://www.ee.oulu.fi/
research /ouspg/protos/analysis/ WP2000-
robustness/index.html, 2001., last ac-
cessed May 2008.

P. Leach and D. Naik. Draft-leach-cifs-
vi-spec02: A Common Internet File Sys-
tem (CIFS/1.0) Protocol, Internet Draft.
IETF, March 18, 1997. IETF, 1997.

P. Leach and D. Perry. CIFS: A Common
Internet File System, Microsoft Internet
Developer, MicroSoft Developer Network,
http://www.microsoft.com/mind /1196 /
cifs.asp.

D. Lee, K. Sabnani, D. Kristol, and
S. Paul. Conformance Testing of Protocols
Specified as Communicating Finite State
Machines - A Guided Random Walk Based
Approach. IEEE Transactions on Com-
munications, 44(5):631-640, 1996.

23]

[25]

[26]

[28]

[29]

[30]

[31]

[32]

D. Lee and M. Yannakakis. Principles and
Methods of Testing Finite State Machines
- A Survey. In Proceedings of The IEEE,
volume 84, pages 1090-1123, 1996.

S Marquis, T. Dean, and G.S.N Knight.
SCL: A Language for Security Testing of
Network Applications. In Proc. CASCON
2005, pages 155-164, Toronto, Canada,
Oct. 2005.

J. Moy. OSPF Version 2. Internet RFC
2528, 1998.

D. Owen, D. Desovski, and B. Cukic. Ran-
dom testing of formal software models and
induced coverage. In Proc 1st Int. Work-
shop on Random Testing, pages 20-27,
Portland, USA, July 2006.

Holt R. TA: The Tuple Attribute Lan-
guage, Department of Computer Sci-
ence, University of Waterloo, July 2002
http://plg.uwaterloo.ca/~holt /papers/ta-
intro.htm, last accessed May 2008., 2002.

Sourcefire. SNORT web site at
http://www.snort.org, last accessed Aug
10, 2006.

O. Tal, S. Knight, and T.R. Dean. Syntax-
based Vulnerability Testing of Frame-
based Network Protocols. In Proc. 2nd
Annual Conference on Privacy, Security

and Trust, Fredericton, Canada, October
2004.

Y. Turcotte, O. Tal, S. Knight, and
T. Dean. Universal methodology and tools
for syntax-based vulnerability testing of

protocol implementations. Accepted for
publication in MILCOM 2004, 2004.

Y. Turcotte, O. Tal, S. Knight, and T.R.
Dean. Security Vulnerabilities Assessment
of the X.509 Protocol by Syntax-Based
Testing. Military Communications Con-
ference 2004, 2004.

S. Xiao, L. Deng, S. Li, and X. Wang. In-
tegrated TCP /TP Protocol Software Test-
ing for Vulnerability Detection. In IC-
CNMC' Proceedings of the 2003 Interna-
tional Conference on Computer Networks
and Mobile Computing, page 311, 2003.

10

[33]

[34]

S. Xiao, S. Li, X. Wang, and L. Deng.
Faultoriented Software Robustness Assess-
ment for Multicast Protocols. Second
IEEE International Symposium on Net-
work Computing and Applications, page
223, 2003.

S. Zhang, T.R Dean, and S. Knight.
Lightweight State Based Mutation Test-
ing for Security. In Proc TAICPART-
MUTATION 2007, pages 223-232, Wind-
sor, UK, September 2007.

