
Modeling AUTOSAR Implementations in
Simulink

Jian Chen1, Manar H. Alalfi2, Thomas R. Dean1, and Ramesh S3

1 Department of Electrical and Computer Engineering, Queen’s University, Kingston,
Canada

{jian.chen, tom.dean}@queensu.ca
2 Department of Computer Science, Ryerson University, Canada

manar.alalfi@scs.ryerson.ca
3 General Motors R&D, Warren, MI, USA

ramesh.s@gm.com

Abstract. AUTOSAR (AUTomotive Open System ARchitecture) is an
open industry standard for the automotive sector. It defines the automo-
tive three-layered software architecture. One layer is application layer,
where functional behaviours are encapsulated in Software Components
(SW-Cs). Inside SW-Cs, a set of runnable entities represent the internal
behaviours and are realized as a set of tasks. To address AUTOSAR’s
lack of support for modelling behaviours of runnables, other modelling
languages such as Simulink are employed. Simulink simulations assume
tasks are completed in zero execution time, while real executions require
a finite execution time. This time mismatch can result in failures of an-
alyzing an unexpected runtime behaviour during the simulation phase.
This paper extends the Simulink environment to accommodate the tim-
ing relations of tasks during simulation. We present a Simulink block
that can schedule tasks with a non-zero simulation time. This enables
more realistic analysis during the model development stage.

Keywords: AUTOSAR, Simulink, Simulation, Scheduling

1 Introduction

Modern automotive systems are software intensive and the complexity of these
systems is rapidly growing. There are many critical functions of modern vehicles
that rely on software. An example is embedded controllers that coordinate with
each other to perform advanced control functions such as autonomous driving,
active safety, an infotainment. All of these functions are related to software
which indicates cars contain sone of the largest pieces of software4. A modern
high-end car features around 100 million lines of code. To address the challenge
of automotive systems, a worldwide development partnership AUTOSAR was
formed [1]. AUTOSAR standardizes the entire automotive electronic software
architecture and development methodology [16].

4http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code



While there are many tools that support the AUTOSAR process, MAT-
LAB/Simulink (ML/SL) is a popular option for developing automotive software
that meets the AUTOSAR standard, providing a tool chain that supports the
AUTOSAR development process. We can directly use Simulink blocks to develop
AUTOSAR software components. Embedded Coder5 provides the mapping of
the Simulink models to AUTOSAR components and generates the AUTOSAR
compliant production code.

Simulation is a process of representing the actions of a real-world system.
Through simulation, engineers can evaluate the system design and diagnose prob-
lems in the early phase of the design process. However, the Simulink simulation
algorithm dose not take every factor of the real world into account such as the
time of real-world computation. In other words, software tasks are completed in
zero execution time in the simulation stage. In the real world, software tasks take
non-zero execution time that varies according the hardware platform. Hence,
simulation cannot reflect a real execution at run-time on a specific target hard-
ware platform. Therefore, developing a more realistic model of an AUTOSAR
based software application in Simulink is needed.

AUTOSAR supports a modified version of the priority ceiling scheduling[7].
In this approach, when a lower priority process uses a shared resource, and a
higher priority process needs access to the shared resource, the priority of the
lower priority process is raised to a higher priority so that it may finish using the
resource. This is not always the desired behaviour. Ideally, the contention over
the shared resource should be minimized during the modelling phase. However,
this requires accurate simulation of the timing of each of the software compo-
nents.

Automotive ECU (Electronic Control Unit) software consists of multiple
threads which are often encapsulated in time-triggered tasks and executed on
a Real-Time Operating System (RTOS). The use of model-based development
in creating the ECU software is limited in that a thread in an ECU is derived
from multiple Simulink/StateFlow models that are independently developed,
validated and code-generated. The concept of a thread and timing are largely
absent at the time of development and validation of the models. Thus there is
a large discrepancy between the run-time semantics and the models giving rise
to additional work at run-time. This can be avoided if the run-time abstractions
of time-triggered tasks can be captured early at the modelling level. This would
enable carrying out detailed concurrency and timing analysis early in the cycle
thereby reducing the overall time and efforts involved in the development and
validation cycle of ECU development. In this research, we propose an approach
that can reflect the real system behaviours during the simulation phase and in
the future, identify race conditions at the model level.

5https://www.mathworks.com/products/embedded-coder.html



Fig. 1. AUTOSAR components, interfaces and runnables. (Adapted from [1])

1.1 AUTOSAR

AUTOSAR aims to meet the needs of future cars, provides an open industry
standard among suppliers and manufacturers. The best way to achieve this goal
is to minimize the coupling of software modules through abstraction. Hence,
AUTOSAR defines three main layers: the application layer, the runtime envi-
ronment (RTE), and the basic software (BSW) [17].

The functions in application layer are implemented by SW-Cs, which encap-
sulate part or all of the automotive electronic functions as shown in Figure 1.
The component communications are via a new concept VFB (Virtual Functional
Bus), which is an abstraction of all communication mechanisms of AUTOSAR.
Using VFBs, engineers abstract the communication details of software compo-
nents. Inside the SW-Cs, the internal behaviours are represented by a set of
runnables. A runnable is the smallest piece of code that can be independently
scheduled either by a timer or an event. Finally, runnables are implemented as
a set of tasks on a target platform. Runnables from different components may
be mapped into the same task and must be mapped in such a way that ordering
relations and causal dependencies are preserved.

1.2 AUTOSAR Support in ML/SL

In fact, ML/SL has supported AUTOSAR compliant code generation since ver-
sion R2006a. ML/SL and Embedded Coder provide a powerful platform for AU-
TOSAR software development from behaviour modeling to production code gen-
eration. First, each single AUTOSAR concept can be represented by an ML/SL
block. Existing ML/SL blocks can be applied to AUTOSAR development and
no additional AUTOSAR-specific blocks are required. Table 1 shows examples



of key mappings between AUTOSAR concepts and Simulink concepts [15]. Sec-
ond, ML/SL provides a Simulink-AUTOSAR Mapping Explorer for configuring
the mapping of Simulink inports, outports, entry-point functions, data transfers,
and lookup tables to AUTOSAR elements. Last, Embedded Coder software sup-
ports AUTOSAR-compliant C code generation and AUTOSAR XML(ARXML)
description files exporting from an ML/SL model.

Table 1. Examples of ML/SL and AUTOSAR Concepts Mapping

ML/SL AUTOSAR

Subsystem Atomic Software Component
Function call subsystem Runnable
Function calls RTEEvents

1.3 Simulink

ML/SL system models are blocks connected to each other by signals between in-
put and output ports. ML/SL simulation engine determines the execution order
of blocks before simulation in a sorted order, called the block invocation order.
The block invocation order can be determined by the data dependencies among
the blocks. ML/SL uses two kinds of block direct feedthrough and non-direct
feedthrough to ensure the simulation can follow the correct data dependencies.
A block for which the output ports is directly determined by its input ports is
a direct-feedthrough block, while a block for which inputs only affect its state
is a non-direct feedthrough block. ML/SL use the following two basic rules to
form the sorted order [11]: A block must be executed before any of the blocks
whose direct-feedthrough ports it drives; Blocks without direct feedthrough in-
puts can execute in arbitrary order as long as they precede any block whose
direct-feedthrough inputs they drive. All blocks are scheduled in a sorted order
and executed in a sequential execution order. The simulink engine maintains
a virtual clock to execute each ordered block at each virtual time. Hence, a
Simulink block is usually exhibited as a zero execution time behaviour.

Simulink Coder6 not only supports code generation for ML/SL models, it of-
fers a framework to execute the generated code in a real-time environment. The
framework assures the generated code follow the standard of simulation engine
and the implementation should preserve the semantics of models. Simulink Coder
has two code generation options for periodic tasks: single task and multi-task.
Single task implementations can preserve the semantics during the simulation be-
cause the generated code is invoked by a simple scheduler in a single thread with-
out preemptions. For multi-task implementations, the generated code is invoked
by a rate monotonic (RM) [8] scheduler in a multithreaded RTOS environment,

6https://www.mathworks.com/products/simulink-coder.html



where each task is assigned a priority and preemptions occur between tasks. As
a consequence of preemption and scheduling, the implementation semantic can
conflict with the model semantic in a multi-rate system. Hence, the Simulink
simulation does not always reflect the actual model behaviours in implementa-
tion. In this work, we develop a scheduler that can schedule the executions of
ML/SL blocks with priorities and preemptions during the simulation.

1.4 Scheduler

ML/SL uses a scheduler mechanism to schedule the execution of Simulink sub-
systems in a specific order [12]. The scheduler is implemented by Stateflow charts
and it implicitly controls the order of execution in a Simulink model. There are
three kinds of schedulers that can be implemented using Stateflow including
Ladder logic scheduler, Loop scheduler, and Temporal logic scheduler. In this
work, we developed a new scheduler to replace the ML/SL scheduler to enable
a more realistic simulation.

2 Related Work

Logical Execution Time (LET) [6] was introduced as part of the time-triggered
programming language Giotto. It abstracts from the physical execution of a real-
time program to eliminate I/O execution time so that a LET model execution
is independent from its actual execution. LET uses ports to define a logical task
execution, input ports take values at the start of a task and the output ports
release the values at the end of the task execution. LET has an assumption that
actual task execution should be able to be finished during the logical execution.
Derler et al. [3] demonstrated that real-time software based on LET paradigm
has the ability to exhibit the equivalent behaviour on a specific platform during
the simulation phase in ML/SL. However, Naderlinger et al. [14] points out that
data dependency problems may occur when simulating LET-based software.

In order to keep data consistency and preserving semantics, Ferrari et al.
[4] discuss the proof of absence of interference, disabling of preemption, com-
munication buffers and semaphores as possibilities on a single-core resource in
the context of AUTOSAR. Zeng et al. [18] present similar mechanisms for the
preservation of communication semantics for a multi-core platform.

TrueTime [5] simulator is an ML/SL based network simulation toolbox and it
is good for co-simulation of scheduling algorithms, control algorithms, and net-
work protocols. TrueTime is designed as a research tool that requires a learning
curve for system engineers to use this tool. Additionally, tasks cannot be ex-
pressed directly using production code and requires a special format for function
code.

Cremona et al. [2] propose a framework TRES, which is used for a co-
simulation of the software model and the hardware execution platform. It adds
the schedulers and tasks to Simulink models to model the scheduling delays.



Recently, Naderlinger [13] introduces timing-aware blocks into ML/SL, which
consumes a finite amount of simulation time so that simulation behaviour of
ML/SL models is equivalent to real-time execution behaviour.

Our work differs in the sense that we aim to bring the impact of real-time
execution to the semantics of model simulation in the context of AUTOSAR.
Hence, our approach natively support AUTOSAR development in ML/SL and
the model scheduler can be integrated into code generation.

3 Model Scheduler

In order to reflect the real-time execution of an AUTOSAR Simulink model
on a actual hardware during the simulation process, we propose a customized
scheduler, Model Scheduler, which schedules the order of execution of each sub-
system at a specific time so that Simulink simulation is able to capture the real
behaviour of AUTOSAR applications.

Our model scheduler replaces the Stateflow temporal logic scheduler in the
ML/SL model and schedules a set of given tasks with non-zero execution time
so that the model can have a real-time behaviour during simulation. The model
scheduler is implemented as an S-Function block that can easily substitute for
the Stateflow scheduler in an ML/SL model. The model scheduler takes tasks
and runnables information as input parameters and outputs scheduled subsystem
function call triggers. Inside the model scheduler, we implemented a preemptive
scheduling algorithm written in C based on Fixed Priority Scheduling (FPS) [9]
algorithm, which computes the scheduling and the model scheduler outputs a
subsystem function call trigger when a task is scheduled. A function call trigger
is a control signal, which triggers the connected subsystem to execute when a
control signal has function-call event.

While one of the standard scheduling algorithms in OSEK/AUTOSAR is
priority ceiling scheduling, we would like to minimize the changes in priority
of tasks due to shared resources. Thus we use FPS so that we can identify
race conditions that occur in the model. In FPS, each task has a fixed priority
preassigned by users, and they are stored in a ready queue in an order determined
by their priorities. The highest priority task are selected from the ready queue
to execute. The oldest task will be selected if there are more than one of same
priority tasks exist. In a preemptive system, if a higher priority task is scheduled
during the execution of a lower priority one, then the higher priority task is
executed immediately and the lower priority task is moved to the ready queue.
RM scheduling algorithm is one of the widely used FPS algorithm and it is used
in Simulink Coder for code generation. In RM scheduling, the priority of a task
is associated with its period, a task has a smaller period then it has a higher
priority.

The S-Function provides a mechanism to extend the capabilities of ML/SL
by customizing blocks and S-Functions can be accessed from a block diagram so-
called S-Function block. Customized algorithms can be added to Simulink models
via S-Function blocks written either in MATLAB or C. An S-Function block has



Fig. 2. Model Scheduler parameters Fig. 3. Task active chart

a parameter field that users pass specify parameters to the corresponding S-
Function block. S-Functions communicate with the ML/SL engine through a
set of callback functions so-called S-Function API. Thus, S-Functions make it
possible to control ML/SL simulation process by using a customized algorithm.

4 Tool Implementation: Model Scheduler

Model Scheduler is implemented as a custom configurable Simulink library block
that includes an FPS algorithm written in C and invokes the connected subsys-
tem in the ML/SL interactive development environment.

An S-Function contains a set of callback functions, which the simulation
engine executes at different stages during simulation. We use output function
(mdlOutputs) that computes the output values based on the input parameters.
Before running a simulation, we need to provide the necessary parameters in
the block parameters dialogue shown in Figure 2. The parameters include Task,
Priority, Period, Runnable, Task Mapping, Execution time. The user-entered
parameters are implemented by a block mask, which provides the parameter
dialogue box.

A simple example shown in Figure 4 illustrates the usage of our model sched-
uler. In this example, model scheduler schedules three runnables and they are
mapped to two tasks. Each subsystem represents an AUTOSAR runnable. In
general, the execution order of specific Simulink subsystem is determined by a
Stateflow scheduler. In our case, the Stateflow scheduler is replaced by our tool
Model Scheduler and each Simulink subsystem is scheduled to be executed at a
specified time with a finite execution time. Model Scheduler yields three outputs.
The first output port is the trigger signals that periodically output the specified
time for each subsystem. The trigger signals are connected to a demux block
which splits the multiple trigger signals to a single signal to trigger each subsys-
tem. The second output port is a runnable activation chart that illustrates each
runnable schedule. It shows the start and finish time of each runnable including



Fig. 4. A simple example of using Model Scheduler to schedule AUTOSAR SW-Cs.

the runnable execution time. The third output port is a task activation chart
that illustrates each task schedule.

Model Scheduler is based on an FPS algorithm and implemented as a level
2 S-function written in C. Our algorithm takes as arguments the six input pa-
rameters mentioned above. The parameters can be grouped into two levels, one
describes the properties of a task such as Priority and Period the other one
describes the properties of a runnables such as Task Mapping and Execution
Time. Model Scheduler reserves this two-level information and computes the
current active runnable signal. In this work, we assume execution time of each
runnable is already known. The execution time could either be measured by
running the code on a test platform, or by analysing the behaviour of generated
code (or Simulink model) by off-the-shelf tools. Normally the FPS algorithm
computes a scheduling table, then a runtime dispatching algorithm invokes each
task according to the precomputed table.

Simulating a model has three phases: model compilation, link phase and
simulation loop phase [10]. The Simulink engine each time goes through the
loop is called as one simulation step. In each simulation step, model scheduler is
executed and computes the running task and runnable of current sampling time
and yields a signal to the output port when the current sample time is a beginning
of a task period. The output signal triggers the connected subsystem, which is
a runnable of the current execution task. The model scheduler determines the
current active runnable along with the associated task information at each single
simulation step. If a task or a runnable is expected to run at this simulation
step, then model scheduler invokes a macro to trigger the subsystem connected
to model scheduler.

Let us see an example of how model scheduler performs the schedule compu-
tation. The simple example (Figure 4) has the following settings shown in Table
2. During the simulation loop phase, task T1 and T2 are all scheduled at the
first simulation step and model scheduler maintains a scheduling table to store
the scheduled tasks. T1 is the only executed task at the first simulation step
due to its higher priority and the execution of T1 takes 3ms as only runnable
R1 is mapped to T1. In the first simulation step, model scheduler output a
function-call signal to trigger T1 that is connected to the first output port of



Table 2. The simple example settings

Task Period(ms) Execution Time(ms) Priority Runnable

T1 10 3 2 R1

T2 20 3 1 R2

T2 20 3 1 R3

demux Runnable1 subsystem. There is no output signals at the simulation step
two because it is still during the execution of T1. Until simulation step three, T1

completes its execution and it is time to trigger T2. R2 and R3 are mapped to
T2 so they have the same priority and period. R2 is executed at this simulation
step because its connection order is before R3. R3 is executed right after the
completion of R2. After execution of R3, that is an idle time so there is no trig-
ger signal being output. Figure 3 illustrates the task execution process during
each simulation step. T1 is active during the first three simulation steps and T2

is active at the following six simulation steps in the first 10ms period.

5 Case Study

In this section, we use AUTOSAR compliant ML/SL models scheduled by our
model scheduler to show the scheduler can capture the actual behaviour on a
hardware platform during a Simulink simulation.

5.1 AUTOSAR Model Scheduling

First, we demonstrate a simple example that shows how Model in the Loop (MIL)
analysis benefits from our model scheduler. Figure 5 shows a simple example
using a model scheduler to schedule four runnables mapped to three tasks. The
details of settings are shown in Table 3.

Table 3. Using model scheduler parameters setting

Task Period(ms) Execution Time(ms) Priority Runnable

T1 10 3 3 R1

T2 20 3 2 R2

T2 20 5 2 R3

T3 30 2 1 R4

In this example, we have four runnables which are mapped to three tasks:
R1 is mapped to T1; R2 and R3 are mapped to T2; R4 is mapped to T3. The
model scheduler takes parameters of tasks as input to calculate three outputs.
The first output is the runnable triggers which are connected to four subsystems
accordingly. The other two outputs are time execution diagrams of tasks and
runnables.



Fig. 5. Using Model Scheduler to schedule AUTOSAR SW-Cs.

If we simulate this example using a standard scheduler, the execution order
of this example is T1T2T3 or R1R2R3R4 respectively and they are completed
within the first 10ms period based on tasks settings. In reality the above order
is not possible, since each task requires a certain amount of execution time on a
hardware platform. Our scheduler tries to be realistic by taking execution time
into account.

Figure 6 shows runnables execution diagram of our scheduler. There are four
output signals and each output signal represents each runnable. The first signal
shows the execution of R1 in T1. It has the highest priority so it is trigged at
the beginning and takes 3ms execution time. After the execution of T1, the
next highest priority is T2 with 2 runnables. R2 is triggered at time of 3ms and
takes another 3ms execution time. R3 is supposed to be triggered right after
the completion of R2. However, R3 is triggered right after the completion of the
second R1 instance because the period of T1 is 10ms and the execution time for
both R1 and R2 are 3ms. There is only 4ms left before R1 is triggered at next
period and it is less than the execution time of R3 of 5ms. Because a runnable is
the smallest atomic component within a SW-C, there is no preemption between
runnables. R3 cannot be preempted by R1. Thus, R3 is scheduled to be executed
after the completion of second R1 instance. The execution order of our scheduler
is T1T2T1T2T3 or R1R2R1R3R4. Figure 7 shows the tasks execution diagram.
There are three output signals represent tasks execution. During the first period
of T2, T1 is triggered twice and T2 is preempted by T1.

5.2 Scheduler Example

In this section, we use an example model, which is scheduled by two different
schedulers the Stateflow Scheduler and Model Scheduler, to show our scheduler
is able to simulate actual behaviours during the simulation phase. The State-



Fig. 6. Runnables execution time diagram Fig. 7. Tasks execution time diagram

Fig. 8. An Example using Stateflow Scheduler

flow scheduler takes zero execution time during the Simulink simulation. On
the contrary the model scheduler triggers each subsystem which takes a speci-
fied execution time during simulation. By comparing simulation results between
these two schedulers, the potential unexpected behaviours of Simulink models
are exposed.

Figure 8 shows the normal example which uses a Stateflow temporal logic
scheduler to trigger each task. The parameter settings are the same as Table 2
except the execution time of R3 is 5ms. There are three runnables (R1, R2, R3)
mapping to two tasks (T1, T2) in this example. R1 writes a constant value to a
global variable A. R2 reads A first then writes the summation of A and its delay
value to A. R3 reads A then subtracts its delay value from A, and outputs the
result. Figure 9 shows the simulation output of this normal example. The three
signals are the outputs of R1, R2, R3 from top to bottom. From this simulation
result, the output of R3 is an increasing number. In the normal simulation, the
execution order are T1T2 or R1R2R3.

We replaced the Stateflow scheduler with our model scheduler and run sim-
ulation again, we can get a different result shown in Figure 10. In the second
simulation, the output of R3 is a pattern of zero, constant value, which is different
from the previous example. The execution order of this example are T1T2T1T2

or R1R2R1R3. In the previous example, R3 always reads A which is written by



Fig. 9. Output of Stateflow scheduler Fig. 10. Output of Model Scheduler

Fig. 11. Splitting a single runnable into three subsystems

R2. Using our scheduler, R3 reads the global variable A from the output of the
second R1 instance because T2 is preempted by T1 during the execution of T2.

So far, we have demonstrated model scheduler is capable of simulating task in-
terference while runnables are atomic execution. However, runnables run within
the context of a task and tasks can be preempted. Hence, runnables can be pre-
empted by runnables in other tasks. In order to show model scheduler is able to
simulate the preemption at runnable level, we manually split a single runnable
into several function-call subsystems so that our model scheduler treat these
subsystems as “runnnables” to simulate runnables preemptions. This splitting
example is depicted in Figure 11. When we set the parameters accordingly, we
can simulate the preemptions at the runnable level.

6 Limitations

One of the shortcomings of model scheduler is that our model scheduler does
not yet support runnable preemption automatically. In reality, runnables can be
preempted by another task during its execution. If we can simulate this scenario



during simulation phase automatically, it can increase the confidence of design
and reduce human effort. Since the time for each block is an estimation, it may
not accurately represent the real time of the system. Multiple simulations with
different time parameters may be needed to cover the possible behaviours of the
system.

7 Future Work

We plan to automatically transform Simulink models to subdivide a runnable
into subsystems automatically. Additionally, our current model scheduler only
support periodic events. Both periodic and aperiodic tasks exist in real-time
system and aperiodic events are necessary in automotive software. One possible
area of expansion is to support aperiodic events in our model scheduler. Further,
we could add more real-time scheduling algorithms such as Earliest-deadline-first
(EDF) scheduling to model scheduler so that engineers can verify the design
under different scheduling algorithms to meet the requirements of diverse target
platforms

We also plan to use the modified models to identify interference between
tasks. Currently, our model scheduler requires execution time as parameters
to perform simulation so that we can find potential issues during the simulation
phase. In the future, we perform a model scheduler simulation based on the input
parameters, we can model the execution times as variables inside the scheduler
and change the value of execution until we find a potential interference.

8 Conclusion

Model scheduler is able to schedule Simlulink models in a more realistic way so
that ML/SL simulation can reflect the real-time execution on the target plat-
form. This was implemented in an S-Function block based on FSP algorithm
written in C. Model scheduler can manage the hierarchy of tasks and runnables,
moreover runnables are scheduled according to the tasks parameters. We have
demonstrated a few simple examples to show the abilities of model scheduler. The
approach discussed in this paper enables that ML/SL simulation takes software
execution time into account without any modification to the current models. It
can fill in the gap between the semantics of model simulation and its real-time
execution.

References

1. AUTOSAR: Autosar development partnership. http://www.autosar.org (2018)

2. Cremona, F., Morelli, M., Di Natale, M.: TRES: A Modular Representation of
Schedulers, Tasks, and Messages to Control Simulations in Simulink. Proceedings
of the 30th Annual ACM Symposium on Applied Computing (2015) 1940–1947



3. Derler, P., Naderlinger, A., Pree, W., Resmerita, S., Templ, J.: Simulation of
LET models in Simulink and Ptolemy. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Volume 6028 LNCS., Springer, Berlin, Heidelberg (2010) 83–92

4. Ferrari, A., Di Natale, M., Gentile, G., Reggiani, G., Gai, P.: Time and mem-
ory tradeoffs in the implementation of AUTOSAR components. In: 2009 Design,
Automation & Test in Europe Conference & Exhibition, IEEE (apr 2009) 864–869

5. Henriksson, D., Cervin, A., Årzén, K.E.: TrueTime : Real-time Control System
Simulation with MATLAB / Simulink. Proceedings of the Nordic MATLAB Con-
ference (2003)

6. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered lan- guage
for embedded programming. Emsoft 91(1) (2001) 166–184

7. L., S., R., R., J., L.: Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers 30(9) (Septebmer 1990) 1175–
1185

8. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: exact
characterization and average case behavior. [1989] Proceedings. Real-Time Systems
Symposium (1989) 0–5

9. Liu, C.L., W. Layland, J.: Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment Scheduling Algorithms for Multiprogramming. Journal of
the Association for Computing Machinery 20(1) (jan 1973) 46–61

10. MathWorks.: Developing S-Functions, r2017b. http://www.mathworks.com (2017)
11. MathWorks.: Simulink User’s Guide, r2017b. http://www.mathworks.com (2017)
12. MathWorks.: Stateflow User’s Guide, r2017b. http://www.mathworks.com (2017)
13. Naderlinger, A.: Simulating preemptive scheduling with timing-aware blocks in

Simulink. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, IEEE (mar 2017) 758–763

14. Naderlinger, A., Templ, J., Pree, W.: Simulating real-time software components
based on logical execution time. In: Proceedings of the 2009 Summer Computer
Simulation Conference. SCSC ’09, Vista, CA, Society for Modeling &#38; Simu-
lation International (2009) 148–155

15. The AUTOSAR Consortium: Applying simulink to autosar, r3.1. (2006)
16. The AUTOSAR Consortium: AUTOSAR Methodology, r4.3. (2018)
17. The AUTOSAR Consortium: The AUTOSAR Standard, r4.3. (2018)
18. Zeng, H., Di Natale, M.: Mechanisms for guaranteeing data consistency and flow

preservation in AUTOSAR software on multi-core platforms. In: SIES 2011 -
6th IEEE International Symposium on Industrial Embedded Systems, Conference
Proceedings, IEEE (jun 2011) 140–149


