
Context Sensitive and Secure Parser Generation for Deep Packet Inspection of
Binary Protocols

Ali ElShakankiry
Queen’s University School of Computing

Kingston, ON, Canada
0sae@queensu.ca

Thomas Dean
Department of Electrical and Computer Engineering

Queen’s University
Kingston, ON, Canada
tom.dean@queensu.ca

Abstract—Network protocol parsers constantly dissect a large
number of packets to place into internal data structures for
further processing. We propose an approach that automatically
generates custom protocol parsers to process network traffic to
be used as part of an Intrusion Detection System. This paper
takes a look at the case of command and control/industrial
control networks that are characterized by a limited number
of known protocols. We present a robust, secure, and high-
performing solution that deals with the issues that have only
partially been addressed in this domain.

1. Introduction

Network protocol parsers are extensively used in systems
today to ensure traffic integrity and security. While essential
for network intrusion detection systems (NIDS) firewalls and
general network analyzers, many network protocol parsers
are still written by hand and from scratch for their specific
purpose. Writing custom network parsers by hand is time
consuming, and prone to security vulnerabilities as can be
seen from protocol analysis tools like Wireshark [1], [2].
We introduce a parser generator framework that produces
high-performing parsers with deep packet inspection (DPI)
capabilities. The goal of our project is to provide a parser
generator framework that is meant to be used to fully gen-
erate an NIDS system that is to be used in limited networks
as defined by Hasan et al. [3]. In this context, a limited
network is one in which all of the networking protocols
that exist on the network are known and used for a special
purpose. Examples of limited networks include air traffic
control systems and factory networks.

There have been multiple efforts in the research commu-
nity to create general-purpose and network protocol parser
generators, all with their own domain-specific languages
and goals. Our parser generator framework is aimed at
providing a domain-specific language with the ability to
specify parsing constraints that closely resemble network
protocol definitions in Request for Comments (RFCs). The
framework also allows for the specification of intrusion
detection constraints all in the input language. The output
of our framework generates custom protocol parsers in C
that are context-dependent and have been used in our NIDS

prototype to inspect ARP [4], IGMP [5], and multiple UDP
[6] protocols.

1.1. Parser Requirements

A network-based intrusion detection system needs to
ensure that there is no malicious network data. It is essential
that its parser operates with the following requirements in
mind. The parser needs to support the maximum throughput
of the network. It should also be robust and run at all times
without crashing. The parser itself needs to be secure to
ensure that it does not introduce a new attack vector on the
network. From the end user’s perspective, the parser needs
to be maintainable. This involves providing a high-level
language specification with the ability to add and remove
modules for protocols that function at different networking
layers. We briefly discuss how the generated parser achieves
these goals.

Performance: The generated custom parsers for the ex-
ample UDP based protocols is able to parse packets at 1.2
GBits per second in a single thread, the speed of the many
limited networks.

Reliability: Since the parser is generated from a high
level specification, the parser implementation contains all
of the checks, such as the release of unused memory, that
might be omitted in a manually written parser.

Security: The parser generator’s code templates were
created to check for the possibility of buffer overflows. Pack-
ets with unintended data according to protocol specifications
will fail to parse.The code templates have been tested and
designed specifically to avoid common security pitfalls that
are often seen in hand written code.

High-Level Specification: ASN.1 notation was intro-
duced by the ITU [7], [8] to specify binary protocols. By
extending ASN.1, Syntax Constraint Language [9] allows
the user to specify parsing constraints utilizing a notation
that is created specifically for internet protocols like OSPF
[10] and SNMP [11].

Modular: SCL takes advantage of the ANS.1 module
concept. Each protocol is written in a separate SCL module,
and combined to form a single parser for the group of
protocols for a particular frame type. The grammars may

also be layered allowing a single parser to be generated for
all of the defined network protocols.

The structure of the following sections in the paper is as
follows. Section 2 provides a description of the backbone
of our DPI framework. Sections 3 and 4 describe the input
and output to the parser generator framework in depth. The
evaluation follows in Section 5, and we discuss related
works in section 6. We end this paper by laying out plans
for future work and concluding in Section 7.

2. Background

2.1. The TXL Source Transformation Language

TXL is a functional programming language used for
source to source transformations and rapid prototyping in
multiple software engineering applications [12], [13]. It
has been used in solving large-scale real world problems
involving billions of lines of code such as the year 2000
problem [14]. The language comprises of two stages in the
process of creating a source transformation. The first stage
is defining context-free grammars for the languages that a
user is translating. A parser for the grammars defined are
derived by the TXL engine and are not modifiable by the
user. These grammars can be extended or overridden by the
user for certain instances of transformations. The second
is a set of by-example source transformations, comprised of
rules and functions that match contextual information of the
original source language, and transform them to the target
language.

We have extensively used TXL as the backbone for
generating our binary protocol parsers. TXL is used for
multiple stages in our parser generator framework. We begin
by ensuring our input language syntax and part of the
semantic information is correct as provided by the user, and
end at generating our output source code. The output is C
source code that carries out the DPI on binary protocols.
The output format closely resembles hand written protocol
parsers.

3. Syntax Constraint Language

SCL provides the network security specialist a means to
define a modular syntax specification for the binary protocol
they wish to parse. SCL is an extension to ASN.1, and
is used due to its ease of defining network protocols. The
extensions developed by Marquis et al. introduce blocks of
XML markup for sequences in ASN.1 that allow constraints
to be specified. By using SCL constraints, we can embed
the semantic information of an object’s attributes alongside
their syntactic specification. This extends ASN.1 to allow
the definition of context-sensitive grammars and provides
the information needed to generate optimized parsers. SCL
has been used before to test the security of network protocol
data by mutating packets and reassembling them to wire
format data [15], [16].

In this section we discuss the importance of adapting
ASN.1 to create a parser that is modular in addition to the

1 NTPV4 DEFINITIONS ::= BEGIN
2
3 EXPORTS PDU;
4
5 PDU ::= SEQUENCE {
6 flags INTEGER (SIZE 1 BYTES),
7 peerStratum INTEGER (SIZE 1 BYTES),
8 peerInterval INTEGER (SIZE 1 BYTES),
9 peerPrecision INTEGER (SIZE 1 BYTES),

10 rootDelay INTEGER (SIZE 4 BYTES),
11 rootDispersion INTEGER (SIZE 4 BYTES),
12 referenceId INTEGER (SIZE 4 BYTES),
13 referenceTS INTEGER (SIZE 8 BYTES),
14 originTS INTEGER (SIZE 8 BYTES),
15 recieveTS INTEGER (SIZE 8 BYTES),
16 transmitTS INTEGER (SIZE 8 BYTES)
17 } (ENCODED BY CUSTOM)
18 <transfer>
19 Back{ (flags & 56) == 32 }
20 </transfer>
21
22 END

Figure 1. Defining NTP version 4 in SCL.

constraints added by the SCL specification to allow context-
sensitive parsing.

3.1. ASN.1

In this section we describe how the ASN.1 specification
is used in SCL to keep the generated parser modular.

Figure 1 shows an NTPV4 module defined in SCL that
exports its top level object. In this case the full protocol data
unit or PDU for the Network Time Protocol [17]. Exporting
PDU from the NTPV4 module allows the UDP module in
Figure 2 to import and define parser entry points for all
of the protocols that run on top of UDP. This is done by
importing all of the known modules that use UDP to send
network data. Note that the UDP module example in Figure
2 will not generate any layer 4 parsing for the UDP protocol.
In this case, an end user has to manually skip the UDP
header at layer 4 to pass the data properly to the generated
parser, which will attempt to parse an NTPV4 or RTPS
packet. The generated parser for this module expects to be
called and passed the PDU of the child protocols without
any of the UDP header information.

By leveraging the power of multiple modules and layer-
ing the protocols in ASN.1, we can add a full UDP module
definition as seen in Figure 3. This now allows a parser to
be generated that will begin parsing at layer 4. The user in
this case is then responsible for passing the data from the
packet at the beginning of the UDP header. This example
can be extended to generate a parser that begins at layer
2 of the networking model, all the way up to application
level data in layer 7. This gives the end user the flexibility
of specifying the data for which they want to generate a
parser.

1 UDP DEFINITIONS ::= BEGIN
2 IMPORTS PDU FROM RTPS, PDU FROM NTPV4;
3 PDU ::= (RTPS.PDU | NTPV4.PDU)
4 END

Figure 2. Unifying modules that run on top of the UDP protocol.

1 UDP DEFINITIONS ::= BEGIN
2 IMPORTS PDU FROM RTPS, PDU FROM NTP;
3 PDU ::= SEQUENCE {
4 srcPort INTEGER (SIZE 2 BYTES),
5 dstPort INTEGER (SIZE 2 BYTES),
6 length INTEGER (SIZE 2 BYTES),
7 checksum INTEGER (SIZE 2 BYTES),
8 udpProto UDP_PROTO (SIZE DEFINED)
9 } (ENCODED BY CUSTOM)

10
11 UDP_PROTO ::= (RTPS.PDU | NTP.PDU)
12 END

Figure 3. Including UDP layer 4 parsing for the generator.

3.2. SCL Additions

In this section we describe the main extensions to SCL
that are used to provide the information needed to generate
the parser. We first discuss extensions that are made directly
to the ASN.1 subset of SCL, followed by the extensions to
the SCL constraint blocks that can be appended to type deci-
sions and sequences, lines 3 and 5 in Figure 4, respectively.

3.2.1. Custom Extensions. There are three extensions made
to SCL in order to properly generate the parsers. We describe
these below.

Size Constraints. The first involves specifying SCL
size constraints directly following attribute types in ASN.1
notation as shown in Figure 4 line 6. This avoids having
to take the approach introduced by Marquis et al. [9] of
specifying the number of bytes of each attribute in an XML
block following a sequence.

Force Byte-Order. The second extension specifically
forces a certain byte order for the parsing of an attribute. The
parser generator provides the capability of specifying nested
endianness inside protocols. This can be seen in protocols
like RTPS, which may change their byte ordering based
on values inside of the data that is being parsed. Nested
endianness and their constraints are described in Section 4.

Optional Fields. Some protocols have attributes
which only exist in some cases. These can be additions
to the end of a packet that will not always appear. They
can also be fields that only exist when previous fields hold
specific values. The IGMP module in Figure 4 shows the
example where the v3Add attribute is an optional field. This
field only exists in a query packet of the IGMPv3 protocol,
and does not exist in the previous IGMPv2 version. By
stating the attribute as OPTIONAL in line 10 of Figure
4, the parser generator knows that this field will only exist
when a specific constraint is met. This leads to checking the
constraints specifically in the Query sequence of the IGMP
protocol.

1 IGMP DEFINITIONS ::= BEGIN
2 EXPORTS PDU;
3 PDU ::= (Query | V2Report | V2Leave | V3Report)
4
5 Query ::= SEQUENCE {
6 type INTEGER (SIZE 1 BYTES),
7 maxRespTime INTEGER (SIZE 1 BYTES),
8 checksum INTEGER (SIZE 2 BYTES),
9 groupAddr INTEGER (SIZE 4 BYTES),

10 v3Add V3Addition (SIZE DEFINED) OPTIONAL
11 } (ENCODED BY CUSTOM)
12 <transfer>
13 Back{type == 17}
14 Forward { EXISTS(v3Add) == PDUREMAINING }
15 </transfer>
16
17 V3Addition ::= SEQUENCE {
18 resvSQRV INTEGER (SIZE 1 BYTES),
19 QQIC INTEGER (SIZE 1 BYTES),
20 numSources INTEGER (SIZE 2 BYTES),
21 srcAddrs SET OF SOURCEADDRESS (SIZE CONSTRAINED)
22 } (ENCODED BY CUSTOM)
23 <transfer>
24 Forward{ CARDINALITY(srcAddrs) == numSources }
25 </transfer>
26 ...
27 SOURCEADDRESS ::= SEQUENCE {
28 srcAddr INTEGER (SIZE 4 BYTES)
29 } (ENCODED BY CUSTOM)
30 END

Figure 4. Partial IGMP definition with SCL constraints.

1 TOPICS ::= SEQUENCE {
2 encapsKind INTEGER (SIZE 2 BYTES) BIGENDIAN,
3 encapsOpts INTEGER (SIZE 2 BYTES) BIGENDIAN,
4 topicData SET OF TOPICPARMS (SIZE CONSTRAINED)
5 } (ENCODED BY CUSTOM)
6 <transfer>
7 Forward { TERMINATE(topicData) == PIDSENTINAL}
8 </transfer>

Figure 5. RTPS definition of TOPICS sequence.

3.2.2. Constraints. Constraint blocks are written as XML
tags directly following sequences in SCL. The constraint
type used for the parser generator, is the transfer block,
line 23 in Figure 4. This block type as described by Marquis
et al. and is used for constraints that specifically pertain to
the encoding or decoding of data. The SCL language also
introduces other types of constraint blocks which are not
needed to generate the context-sensitive parsers. In this case,
only transfer blocks are used to properly decode the
data. All of the examples provided below are from Figure
7 unless otherwise specified.

1 TOPICPARMS ::= (PIDTOPICNAME | PIDTYPENAME |
2 PIDRELIABILITY | PIDENDPOINTGUID |
3 . . . |PIDSENTINAL)

Figure 6. partial listing of the TOPICPARMS type decision.

Value Constraints. The parser can decide if it is
decoding the correct type of data if it knows what values it
should expect for certain fields. Value constraints will tell
the parser to check for a value as soon as the specified
field is parsed. This is seen in Figure 7 line 14. In this
case, if the one byte integer field kind is not the value
specified, then the parser knows that the data currently being
parsed is not of the DATASUB type in RTPS, and the parser
must backtrack. The parser can also decide what the next
sequence type to be parsed is going to be. This can only
be done when there exists value constraints in multiple
sequences for the same attribute type. The attribute in this
case must be at the beginning of the sequences, like kind
in this example. This optimization is discussed in section
4.4 and allows the generation of the LL(1) parser.

Nested Constraints. A nested constraint is a value
constraint where the value that needs to be checked is inside
of a sub-type. In the case of line 15 in Figure 7, the key
data is inside of the ENTITYID type that is parsed for the
writerEnt field. The value of a nested constraint is checked
once the whole field at the current level has been parsed, or
once writerEnt is completely parsed in this case.

Endianness. Figure 7 provides the example of nesting
the endianness of data in the PDU. Line 17 in Figure 7
shows that the endianness of the attributes following the
flags attribute are based on the value that is parsed for
the attribute itself. We provide the capability of ignoring the
current byte-order to parse in by specifying that an attribute
must be parsed using a specific byte-order as seen in line 7.

Terminators. Figure 5 shows the example of fields
that can have a variable number of objects. In the case of
the topicData attribute in line 4 of Figure 5, there can be
multiple fields of the TOPICPARMS parent-type defined by
the user. The SET OF prefix in SCL is used to define a
list of multiple fields of the same type. In order to parse
SET OF fields properly, the generated parsers require that
a terminating constraint is specified in the transfer block.
The example at line 7 of Figure 5 says that the last user-
defined type that should be in the list of topicData is the
PIDSENTINAL type, a child of the TOPICPARMS type as
seen in Figure 6. There are two other types of terminator
constraints that may be used to specify when a SET OF
parse should end. The first is a CARDINALITY constraint,
where the number of items in a list are specified in a
previously parsed field. This can be seen in line 24 of Figure
4, the number of items in the srcAddrs field depends on the
value parsed in the numSources field. The last possibility
for a SET OF field is that the field with a list of data is at
the very end of a packet. This is specified as follows:

FORWARD{ END(field) }

Callbacks. When packets have been parsed, users
are given the choice of specifying callback constraints in
transfer blocks, allowing the parser to call a function
that will process the parsed packet. By providing callback
functions, users of our generated parsers do not have to
walk our data structures in order to determine what type of

1 DATARSUB ::= SEQUENCE {
2 kind INTEGER (SIZE 1 BYTES),
3 flags INTEGER (SIZE 1 BYTES),
4 nextHeader INTEGER (SIZE 2 BYTES),
5 extraFlags INTEGER (SIZE 2 BYTES),
6 qosOffset INTEGER (SIZE 2 BYTES),
7 readerEnt ENTITYID (SIZE DEFINED) BIGENDIAN,
8 writerEnt ENTITYID (SIZE DEFINED) BIGENDIAN,
9 writerSEQ INTEGER (SIZE 8 BYTES),

10 inlineQos QOSPARM (SIZE DEFINED) OPTIONAL,
11 serializedData TOPICS (SIZE DEFINED) OPTIONAL
12 } (ENCODED BY CUSTOM)
13 <transfer>
14 Back {kind == 0x15}
15 Back {writerEnt.key == 0x4 }
16 Back {writerEnt.kind == 0xC2 }
17 Forward { ENDIANNESS == flags & 0x1 }
18 Forward { EXISTS(inlineQos) == flags & 0x2 }
19 Forward { EXISTS(serializedData) == flags & 0xC }
20 </transfer>

Figure 7. RTPS definition of DATARSUB sequence.

1 typedef struct {
2 uint8_t kind;
3 uint8_t flags;
4 uint16_t nextheader;
5 uint16_t extraflags;
6 uint16_t qosoffset;
7 ENTITYID_RTPS readerent;
8 ENTITYID_RTPS writerent;
9 uint64_t writerseq;

10 QOSPARM_RTPS *inlineqos;
11 TOPICS_RTPS *serializeddata;
12 } DATARSUB_RTPS;

Figure 8. C struct translation of example in Figure 7.

network data has been dissected, and can directly proceed
with processing this type of packet.

Length Constraints. Length constraints exist when
the length of a field depends on a previously parsed value.
Figure 10 shows two sequences that both have length con-
straints. The NESTEDSTRING sequence is used as the type
for the topicName field in the PIDTOPICNAME sequence.
This constraint allows users to deal with dynamically sized
data that may be decided at run time for these protocols.
This constraint type also introduces the concept of nested
length constraints which can be a serious security issue. We
discuss the importance of our source code implementation
of this issue in the next section.

4. Parser Generation

This section provides a brief overview of the resulting
parser code that is generated. This is done by taking the
SCL-defined protocols and translating them into C code. The
output for each protocol is two files. The first is a header
file that defines all the C structures used to fill in parsed
data. The second is a source file that parses data from the
PDU given to verify that the data is according to the SCL
specification given by the user. This can be seen in Figure

Figure 9. Parser generation flow chart.

1 PIDTOPICNAME ::= SEQUENCE {
2 parameterKind INTEGER (SIZE 2 BYTES),
3 parameterLength INTEGER (SIZE 2 BYTES),
4 topicName NESTEDSTRING (SIZE DEFINED)
5 }
6 <transfer>
7 Back {parameterKind == 5 }
8 Forward { LENGTH(topicName) == parameterLength }
9 </transfer>

10
11 NESTEDSTRING ::= SEQUENCE {
12 nameLength INTEGER (SIZE 4 BYTES),
13 name OCTET STRING (SIZE CONSTRAINED),
14 }
15 <transfer>
16 Forward { LENGTH(name) == nameLength }
17 </transfer>

Figure 10. Example of nested Length Constraints.

9. If the network data provided fails a parse, then the packet
is ignored and flagged. Flagged packets can be used to fix
mistakes in the SCL specification, or to ensure that packets
are malformed when parses fail. The parsed packets can then
be used for analyzing the network data. In the scope of this
project, the generated parsers will provide the data needed
for the constraint-based IDS engine that is used to generate
network alerts.

4.1. Unique Naming

In order to ensure that the generated parsers do not
have any name collisions between data types and modules
specified in SCL, we need a unique naming scheme. Before
SCL code is used for code generation, it is processed by a set
of TXL scripts that will create unique names for all custom
types defined inside of the SCL modules. This includes the
module name, the sequence names, and user-defined types.

4.2. Data Structure Generation

All data types in the forms of sequences and type
decisions in SCL need to be represented in the generated
parser. C structs are generated and used to hold the parsed
data. Figure 8 shows the translation from the definition

of a DATARSUB sequence in Figure 7. Integer types are
declared as unsigned integers with the same number of
bytes as specified. Integers with odd byte boundaries are
rounded up. Integer fields larger than 8 bytes are placed in
unsigned character strings. User-defined types are translated
to their respective C structs that are generated as seen in
line 7 of Figure 8. Optional and variable size data like
SET OF types are translated into pointers and allocated
according to constraints specified at run time. Examples of
these translations are shown in Section 4.5 pertaining to the
source file generation.

4.3. Supported Types

Other than types that are defined by the user in SCL, we
support and generate multiple primitive types depending on
what the user specifies in the protocol grammar. All integer
types in SCL ranging from one to eight bytes are generated
as unsigned integers depending on their size. uint8_t,
uint16_t, uint32_t, and uint64_t types are used.
Octet strings larger than 8 bytes are treated as constant size
unsigned chars. Smaller octet strings are translated to their
equivalent integer size. Octet strings that are size constrained
are dynamically allocated unsigned character strings, and
depend on a length constraint that references a previously
parsed field for the size. Real types are also supported. Four-
byte real numbers are generated as floats, and eight-byte
real numbers are generated as doubles. This covers all of
the primitive types that the translator will generate for the
custom data structures.

4.4. LL(1) Optimization

The binary network protocols that are being explored,
RTPS, IGMP, and UDP, are context-sensitive and non-
ambiguous. This makes it possible to generate recursive-
descent parsers with look-ahead capabilities. It also ensures
that a worst-case parse is achieved in linear time. When
the parser reaches part of a PDU with multiple production
choices during the translation phase, either an LL(1) look-
ahead parser is generated, or a backtracking parser is gen-
erated. The parser that is generated depends on the SCL
definition provided by the user for a protocol.

Sequences that have value constraints on their first field
and are part of a type decision can be used to generate
an LL(1) look-ahead parser. The value constraints on the
first field must all be of the same size in bytes, and all of
the values of the field must be mutually exclusive. This is
determined when the SCL specification is being translated
into parser source code by examining all sequences specified
in a type decision. If the translation engine finds that fields
are all of the same size and have different values on the
constraints, then a context-sensitive parser is generated for
the type decision.

Sequences that are part of a type decision that do not
satisfy the requirement of value constraints will generate a
backtracking parser for the type decision. It will attempt to
parse each of the productions in a type decision once. If
attempts to parse each of the sequences in a type decision
all fail, the overall parse fails.

4.5. Constraint Transformation

Constraints are translated directly into the source files
that carry out the parsing of the data. Here we provide con-
crete samples of how the constraints are generated in source
code. The examples provided use the same SCL protocol
samples used in section 3 to describe SCL constraints.
Figure 11 shows the parser that is generated as a result
of the SCL specification for the sequence in figure 7. All
attributes of the C structs generated in the header file will be
parsed based on the size of the fields specified in the SCL
sequence. The constraints specified in the SCL definition
determine what kinds of checks the parser has to make
before completing a parse attempt on the sequence.

4.5.1. Value Constraints. In figure 7 the kind field was
given a value constraint of 0x15 in hexadecimal, or the
decimal value 21. A value constraint in the generated parser
will check for the value of the field directly after it is
parsed as seen in figure 11 lines 8 and 9. In the case
that the kind field has a different value, the parse will
fail and backtrack. If the caller of the parseDATARSUB
function is a translation of a type decision from SCL and
has been optimized, the parse knows that this sequence type
could have been the only possible parse production and
will fail parsing the current packet. An unoptimized caller
will backtrack and attempt to parse the next sequence type
specified in the type decision.

4.5.2. Nested Constraints. The writerEnt field in Fig-
ure 7 shows a nested value constraint for the DATARSUB
sequence. As seen in the generated parser in figure 11,
a user-defined type requires the parser call the generated
parser for the ENTITYID type first. Once the user-defined
type has completed the parse successfully, the nested value
is checked inside of writerEnt. It is possible that in
the middle of the ENTITYID parsing function that a parse
fails. This would be the result of malformed ENTITYID or
overall PDU data.

4.5.3. Endianness. The example used in section 3 shows
that the DATARSUB sequence byte-order depends on the
least significant bit of the flags field. This implementation
interprets a non-zero value as little-endian, and a zero value
as big-endian. The constraint in figure 7 line 17 forces
the the current endianness to change inside of DATARSUB
parsing function and carry through to subsequent parsing
function calls. This can be seen in line 12 of figure 11.
As byte-order is forced to big-endian for the parsing of the
ENTITYID types as one of the SCL options inside of the
DATARSUB sequence, the currently set byte-order will be
ignored as seen in line 18 of Figure 11.

4.5.4. Length Constraints. Figure 10 provides the example
of nested length constraints in SCL. In order to generate
the parser code for nested length constraints, it is essential
that we avoid the possibility of length overflows in the
case of malformed packets. In this example, the length
specified in nameLength for the name string in the
NESTEDSTRING sequence can be malformed and larger
than the total length of the parent field topicName. This
security vulnerability is avoided by providing the parser of
the NESTEDSTRING type a size constrained PDU. In figure
12 we take parameterlength as the new total possible
length of the PDU that is given to the NESTEDSTRING
parser. In the case that the nameLength field of the object
is larger than the length of the constrained PDU, the parse
will fail.

5. Evaluation

The parser generator that was created achieves the five
goals described in section 1.1 due to its design. We have
picked SCL as a specification language due to its similarity
to ASN.1 and binary protocol specifications in RFCs. We
have also introduced the different constraint types and ex-
tensions to the SCL language that are needed to create the
recursive-descent LL(1) parsers. By automating the parser
generation and producing C source code, we are able to
ensure that parsers are secure and perform at high speeds.

5.1. Correctness

The generated parsers for the IGMP, RTPS, ARP and
NTP protocols were tested against captures from our simu-
lated environment described in [18]. Two different versions
of the environment using two different RTPS vendors were
tested. The parsers were successfully tested against clean
captures, and containing packets with structural RTPS er-
rors. The parser was tested as a unit, and also as a part of
the complete multipacket constraint engine.

5.2. Performance

We evaluate the generated parser by comparing to
the performance of the SCL implementation described
by Marquis et al. [19]. The SCL parser is a universal

1 bool parseDATARSUB (DATARSUB_RTPS *datarsub_rtps, PDU *thePDU,
2 char *progname, uint8_t endianness) {
3 if (!lengthRemaining (thePDU, 16, progname)) {
4 return false;
5 }
6 datarsub_rtps->inlineqos = NULL;
7 datarsub_rtps->serializeddata = NULL;
8 datarsub_rtps->kind = get8_e (thePDU, endianness);
9 if (!(datarsub_rtps->kind == 21)) {

10 return false;
11 }
12 datarsub_rtps->flags = get8_e (thePDU, endianness);
13 endianness = datarsub_rtps->flags & 1;
14 datarsub_rtps->nextheader = get16_e (thePDU, endianness);
15 datarsub_rtps->extraflags = get16_e (thePDU, endianness);
16 datarsub_rtps->qosoffset = get16_e (thePDU, endianness);
17 ENTITYID_RTPS readerent;
18 if (!parseENTITYID (&readerent, thePDU, progname, BIGENDIAN)) {
19 return false;
20 }
21 datarsub_rtps->readerent = readerent;
22 ENTITYID_RTPS writerent;
23 if (!parseENTITYID (&writerent, thePDU, progname, BIGENDIAN)) {
24 return false;
25 }
26 datarsub_rtps->writerent = writerent;
27 if (!(datarsub_rtps->writerent.key == 4)) {
28 return false;
29 }
30 if (!(datarsub_rtps->writerent.kind == 194)) {
31 return false;
32 }
33 datarsub_rtps->writerseq = get64_e (thePDU, endianness);
34 if (datarsub_rtps->flags & 2) {
35 datarsub_rtps->inlineqos = (QOSPARM_RTPS *) malloc (sizeof (QOSPARM_RTPS));
36 if (datarsub_rtps->inlineqos == NULL) {
37 return false;
38 }
39 if (!parseQOSPARM (datarsub_rtps->inlineqos, thePDU, progname, endianness)) {
40 free (datarsub_rtps->inlineqos);
41 datarsub_rtps->inlineqos = NULL;
42 return false;
43 }
44 }
45 else {
46 datarsub_rtps->inlineqos = NULL;
47 }
48 if (datarsub_rtps->flags & 12) {
49 datarsub_rtps->serializeddata = (TOPICS_RTPS *) malloc (sizeof (TOPICS_RTPS));
50 if (datarsub_rtps->serializeddata == NULL) {
51 return false;
52 }
53 if (!parseTOPICS (datarsub_rtps->serializeddata, thePDU, progname, endianness)) {
54 free (datarsub_rtps->serializeddata);
55 datarsub_rtps->serializeddata = NULL;
56 return false;
57 }
58 }
59 else {
60 datarsub_rtps->serializeddata = NULL;
61 }
62 return true;
63 }

Figure 11. Generated parser for DATARSUB sequence.

1 if (!lengthRemaining (thePDU, pidtopicname_rtps->parameterlength, progname)) {
2 return false;
3 }
4 PDU constrainedPDU;
5 constrainedPDU.data = thePDU->data;
6 constrainedPDU.len = pidtopicname_rtps->parameterlength;
7 constrainedPDU.curPos = pos;
8 constrainedPDU.remaining = pidtopicname_rtps->parameterlength;
9 NESTEDSTRING_RTPS topicname;

10 if (!parseNESTEDSTRING (&topicname, &constrainedPDU, progname, endianness)) {
11 return false;
12 }

Figure 12. Example of a nested length constraint.

interpretive parser that is used for penetration testing. It
is too slow to parse network data for a real-time NIDS
system that is required to run at speeds supported by
modern routers and switches. Here we compare the speeds
of both parsers by running packet captures of both isolated
and mixed network protocols. All tests were done on a
dual-core cpu running at 2.5 Ghz.

Tables 1 and 2 shows the performance differences be-
tween the interpretive parser and the generated parser. These
were testing using identical packet captures containing
RTPS data.

TABLE 1. INTERPRETIVE PARSER PERFORMANCE

Capture Size (MB) Run Time (s) Bandwidth (Mbit/s)

77 15.1 40.79
225 33.9 53.10
962 148.8 51.74

TABLE 2. GENERATED PARSER PERFORMANCE

Capture Size (MB) Run Time (s) Bandwidth (Mbit/s)

77 0.2 3080.00
225 0.7 2571.43
962 2.7 2850.37

While the results shown do not model a realistic net-
work, they show a significant increase in performance by
taking the parser generation approach. This is due to the
generator creating custom dissectors for each type of proto-
col. The separate parsers are grouped into one parser and can
be used on network data containing the protocols defined in
SCL by the user.
Table 3 shows the result of using the generated parser on
more realistic network data. The packet captures generated
have been used to test the constraint-based NIDS system
being built by our research group. The captures are gener-
ated using the RTI version of the Data Distribution Service
(DDS) [20] to generate RTPS data. The protocols that are
captured on the network are IGMP, RTPS, ARP, and NTP.
All of this data is generated as part of an air traffic control
simulation to model real-world data.

TABLE 3. REALISTIC PARSER PERFORMANCE

Capture Size (MB) Run Time (s) Bandwidth (Mbit/s)

1668 11.5 1191.43
3336 22.0 1213.09
6672 46.3 1152.83

The average bandwidth support sustained by the unified
generated parser is just above gigabit speeds. This would
allow the parser to be used in real-time networks with
switches that support gigabit speeds, and can be used as
the dissector for an NIDS on a live network. These results
include minimal optimizations to the parser generator other
than the LL(1) optimizations inferred from the SCL con-
straints. There has been an extensive list of similar work
done in the research community, and we discuss these in
the following section.

6. Related Work

There has been extensive work in the domain of parser
generation using domain-specific languages including Spicy
[21], Nail [22], ANTLR [23], and Hammer [24].

Spicy is a recently published DPI framework that gen-
erates parsers from a specification language. Similar to our
work, Spicy also ensures robust error handling, and allows
integration with other software through a custom callback
mechanism. They also introduce similar parsing constraints
that allow for LL(1) optimizations. Protocols can also be
layered as they are modular. Spicy allows for the dynamic
detection and dissection of protocols through their concept
of sinks. They provide support TCP stream reassembly.
Figure 13 shows a subset of the IGMP protocol written
in Spicy based on the DNS specification distributed with
Spicy. Conversions from packet bytes to internal value are
done explicitly (line 5), and a switch structure is used to
choose between packet types (lines 6 to 12) in this example.
There is an optimized way of specifying context dependent
parsing choices.

SCL uses a declarative constraint style that is focused
more on a high-level extension to the industry standard
ASN.1 notation. Sommer et al. [21] seem to suggest that
there is some manual intervention in backtracking (see

1 module igmp;
2 type PDUType = enum {V3Report=34, Query=17,
3 V2Report=22, V2Leave=23};
4 export type PDU = unit {
5 ty: uint8 &convert=PDUType($$);
6 switch (self.ty) {
7 PDUType::V3Report -> v3report:
8 V3Report();
9 PDUType::Query -> query:

10 Query();
11 ...
12 };
13 };
14 type V2Leave = unit {
15 maxRespTime: uint8;
16 checksum: uint16;
17 groupAddr: uint32;
18 };

Figure 13. IGMP snippit in Spicy

&try attribute notation). We do not allow the user to
explicitly state how values are converted, this is decided
by the parser generator and the type provided in ASN.1.
Finally we allow for the specification of choices between
types based on sub-elements of complex user-defined types.
An example of this is the writerEnt.key constraint on
line 15 of figure 7. SCL does not yet support TCP stream
reassembly, but as been used to parse mutiple single packet
messages including those that use separate frame types.

Nail is a parser generator that focuses on language
safety. The generator introduces similar constraint types
that deal with context-dependent fields and field lengths.
There exist some differences in our approach that include an
LL(1) optimization before parser generation, and the ability
for custom callback functions that provide an extensible
framework. We also ensure that nested length constraints
cannot violate parent PDU lengths to help mitigate possible
attack vectors through the generated parsers.

Autumn[25] is a context sensitive parsing API based
on 6 operations: call, transform, snapshot, restore, diff and
merge. The call and transform operations represent the
parsing options, while the other four operations represent
state operations that allow the parser to make parsing de-
cisions based on state information. The generation of the
internal representation of the input is still a manual pro-
cess. Similarly, general-purpose parsing tools like ANTLR
provide a viable framework to generate LL(k) recursive
descent parsers, we have provided a modular solution that
is specialized for binary protocols and allows users to write
custom callback functions to deal with different parse types.
ANTLR may very well be used to parse the same packet
types and is more generalized. In our case we focus on
providing a specification language that is familiar to network
protocol developers and users.

Hammer is also an example of a library that allows for
the creation of LL(k) recursive descent parsers. It is similarly
specifically created for the parsing of binary protocols, the
main difference being that its input specification is written
directly in C.

We have introduced the idea of nested endianness, where
the byte-order of fields can change based on previously
parsed data. This allows for the ability to generate parsers
for complicated binary protocols like RTPS for DDS, and
DRDA [26]. While there exist multiple tools that can achieve
the requirements for the parser to be secure, fast, and
reliable, our solution suggests an expressive high-level spec-
ification language that closely relates to network protocol
specification languages like ASN.1. Our main contribution
to SCL is the ability to use context-dependent constraints
to generate the parsers. This makes protocol specifications
simple to implement. We have extended SCL to also allow
for inter-packet constraints, which will generate IDS rules
that can reference data between different packets. This al-
lows the total function of our NIDS system to be specified
using one input format, SCL, and removes the need for
multiple dependencies in creating a specialized NIDS for
limited networks.

7. Conclusion and Future Work

While significant progress has been made in providing
an extended version of SCL to generate fast parsers, there
are multiple optmizations and additions that can be made
to the parsing framework. We have made the framework
available on github1.

The framework in its current state is only able to exam-
ine binary data and does not generate parsers for stream-
based data. One of our main goals in future work is TCP
stream assembly and the parsing of connection-based proto-
cols. This would allow users to parse most network protocols
that exist today using SCL descriptions.

There exist type decisions in SCL that cannot be op-
timized to allow for the generation of an LL(1) parsers.
These are due to two possibilities. The first is that no value
constraints are specified on the first field of all sequences
that exist inside of a type decision. The second is that all
the sequences in a type decision have value constraints;
some of which the values are not mutually exclusive. The
latter instance includes sequences that have identical values
for their first field, and different values for subsequent
fields that differentiate the type of a sequence. By checking
value constraints on multiple fields in a sequence, an LL(k)
optimization can be made, and the generated parser will not
need to backtrack in these instances.

In it’s current form, the framework checks for valid SCL
syntax. The translation framework however does not check
all of the semantic information written by the user. For
example, an OPTIONAL field must have a corresponding
EXISTS constraint for the generator to properly create
the parser. A list field of the form SET OF must also
be accompanied by a terminator constraint. References to
other sequences inside the constraints block of the current
sequence need to be valid. These types of checks are
not made by the current framework. It is essential that a
semantic validation is added to the generator framework to

1. http://github.com/alishak/TAG

minimize user error and incorrect parser generation.

In this paper, we have suggested a new approach to
deep packet inspection by using a domain specific lan-
guage and parser generation to tackle the problem of low-
performance binary parsers. Developers that wish to use this
approach will spend significantly less time by writing SCL
descriptions rather than custom source code to create their
specialized network parsers. They will also achieve the same
performance as hand written dissectors without the need of
spending time ensuring that dissectors are secure and reli-
able. The SCL descriptions can be written to parse certain
sections, or all data inside a set of network packets. They
can also be used to specify value constraints and allow the
generation of LL(1) look-ahead parsers. We have provided
a modular approach that allows users to determine what
layers in the networking model they wish to dissect, and
without extensive optimization, have provided a framework
that generates high performance dissectors that are reliable
and secure.

References

[1] Wireshark, “Wireshark Security Advisories,” accessed 2017-05-29.
[Online]. Available: https://www.wireshark.org/security/

[2] M. Corporation, “Wireshark Vulnerability Trends
Over Time,” accessed 2017-05-29. [Online].
Available: https://www.cvedetails.com/product/8292/Wireshark-
Wireshark.html?vendor id=4861

[3] M. S. Hasan, A. ElShakankiry, T. Dean, and M. Zulkernine,
“Intrusion detection in a private network by satisfying constraints,”
in 14th Annual Conference on Privacy, Security and Trust, PST 2016,
Auckland, New Zealand, December 12-14, 2016, 2016, pp. 623–628.
[Online]. Available: https://doi.org/10.1109/PST.2016.7906997

[4] D. C. Plummer, “An Ethernet Address Resolution Protocol,” accessed
2017-05-29. [Online]. Available: https://tools.ietf.org/html/rfc826

[5] B. Fenner, H. He, B. Haberman, and S. H, “Internet Group
Management Protocol,” accessed 2017-05-29. [Online]. Available:
https://tools.ietf.org/html/rfc4605

[6] J. Postal, “User Datagram Protocol,” accessed 2017-05-29. [Online].
Available: https://tools.ietf.org/html/rfc768

[7] O. Dubuisson, ASN.1 Communication Between Heterogeneous
Systems. Morgan Kaufmann, 2001. [Online]. Available:
https://books.google.ca/books?id=g7RQAAAAMAAJ

[8] ITU, “ASN.1,” accessed 2017-05-29. [Online]. Available:
http://www.itu.int/itu-t/recommendations/rec.aspx?rec=x.680

[9] S. Marquis, T. R. Dean, and S. Knight, “SCL: a language
for security testing of network applications,” in Proceedings
of the 2005 conference of the Centre for Advanced Studies
on Collaborative Research, October 17-20, 2005, Toronto,
Ontario, Canada, 2005, pp. 155–164. [Online]. Available:
http://doi.acm.org/10.1145/1105634.1105646

[10] “OSPF Version 2 Management Information Base,” accessed 2017-
05-29. [Online]. Available: https://tools.ietf.org/html/rfc4750

[11] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network
Management Protocol,” accessed 2017-05-29. [Online]. Available:
https://tools.ietf.org/html/rfc1157

[12] J. R. Cordy, “The TXL Source Transformation Language,” Sci.
Comput. Program., vol. 61, no. 3, pp. 190–210, Aug. 2006. [Online].
Available: http://dx.doi.org/10.1016/j.scico.2006.04.002

[13] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider, “Source
transformation in software engineering using the TXL transformation
system,” Information & Software Technology, vol. 44, no. 13, pp.
827–837, 2002. [Online]. Available: https://doi.org/10.1016/S0950-
5849(02)00104-0

[14] T. R. Dean, J. R. Cordy, K. A. Schneider, and A. J. Malton,
“Using Design Recovery Techniques to Transform Legacy Systems,”
in 2001 International Conference on Software Maintenance, ICSM
2001, Florence, Italy, November 6-10, 2001, 2001, pp. 622–631.
[Online]. Available: https://doi.org/10.1109/ICSM.2001.972779

[15] M. AboElFotoh, T. Dean, and R. Mayor, “An empirical
evaluation of a language-based security testing technique,”
in Proceedings of the 2009 conference of the Centre for
Advanced Studies on Collaborative Research, November 2-5, 2009,
Toronto, Ontario, Canada, 2009, pp. 112–121. [Online]. Available:
http://doi.acm.org/10.1145/1723028.1723043

[16] S. Zhang, T. R. Dean, and S. Knight, “A lightweight approach to
state based security testing,” in Proceedings of the 2006 conference
of the Centre for Advanced Studies on Collaborative Research,
October 16-19, 2006, Toronto, Ontario, Canada, 2006, pp. 341–344.
[Online]. Available: http://doi.acm.org/10.1145/1188966.1189004

[17] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network Time
Protocol Version 4: Protocol and Algorithms Specification,” accessed
2017-05-29. [Online]. Available: https://tools.ietf.org/html/rfc5905

[18] M. S. Hasan, F. Garcia, F. T. Imam, T. R. Dean, M. Zulkernine,
and S. P. Leblanc, “A constraint-based intrusion detection system,” in
Proceedings of European Conference on Computer Based Systems,
ser. ECBS 2017. New York, NY, USA: ACM, 2017, to appear.

[19] S. Marquis, T. R. Dean, and S. Knight, “Packet decoding using
context sensitive parsing,” in Proceedings of the 2006 conference
of the Centre for Advanced Studies on Collaborative Research,
October 16-19, 2006, Toronto, Ontario, Canada, 2006, pp. 263–274.
[Online]. Available: http://doi.acm.org/10.1145/1188966.1188993

[20] RTI, “Context DDS Professional,” accessed 2017-05-29. [Online].
Available: https://www.rti.com/products/dds

[21] R. Sommer, J. Amann, and S. Hall, “Spicy: a unified deep
packet inspection framework for safely dissecting all your data,”
in Proceedings of the 32nd Annual Conference on Computer
Security Applications, ACSAC 2016, Los Angeles, CA, USA,
December 5-9, 2016, 2016, pp. 558–569. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2991100

[22] J. Bangert and N. Zeldovich, “Nail: A Practical Interface Generator
for Data Formats,” in 35. IEEE Security and Privacy Workshops,
SPW 2014, San Jose, CA, USA, May 17-18, 2014, 2014, pp.
158–166. [Online]. Available: https://doi.org/10.1109/SPW.2014.31

[23] T. Parr and K. Fisher, “LL(*): the foundation of the ANTLR parser
generator,” in Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, 2011, pp. 425–436. [Online].
Available: http://doi.acm.org/10.1145/1993498.1993548

[24] M. L. Patterson, “Hammer,” accessed 2017-05-29. [Online].
Available: https://github.com/abiggerhammer/hammer

[25] N. Laurent and K. Mens, “Taming context-sensitive languages with
principled stateful parsing,” in Proceedings of the 2016 ACM SIG-
PLAN International Conference on Software Language Engineering,
ser. SLE 2016. New York, NY, USA: ACM, 2016, pp. 15–27.
[Online]. Available: http://doi.acm.org/10.1145/2997364.2997370

[26] O. Group, “Distributed Relational Database Architecture
(DRDA) Standard,” accessed 2017-05-29. [Online]. Available:
https://collaboration.opengroup.org/dbiop/

