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ABSTRACT
During the parsing of an input, there are often cases where a non-
terminal can be one of multiple possibilities. In order to avoid trial
and error backtracking when parsing, we apply lookahead to eval-
uate k fields in the possibilities. During this lookahead, we check
for fields that have restricted values in order to allow us to deter-
mine which of the possibilities we are currently trying to parse. We
propose an automated system that is able to conduct this k pass
LL(k) lookahead analysis for a Network Protocol Parser Generator.
Our LL(k) optimization is a two-module system that first conducts
a protocol independent lookahead analysis on network protocol
descriptions. We define an XML-style lookahead annotation that en-
capsulates the full typing information from the lookahead analysis.
If any parsing decisions are detected to be optimizable by lookahead,
we apply this markup block to them to prepare for code genera-
tion. The second module is an existing code generator that outputs
a parsing program in C to parse the input protocol. We modify
this existing code generator to create optimized lookahead parsers
using our parse-identify-repeat parsing algorithm from the encap-
sulated information in our markup block. This optimized system is
able to comparatively outclass the previous version, demonstrating
significant improvement.
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• Software and its engineering→ Software evolution; Source
code generation; Parsers; Software reverse engineering; • Security
and privacy→ Network security.
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1 INTRODUCTION
One of themost natural ways to optimize any parser is to implement
lookahead parsing strategies. This allows the parser to determine
which non-terminal it is currently parsing [1, 6, 22]. The benefit of
this optimization is to avoid backtracking while parsing. Constant
backtracking increases the cost resulting in a performance penalty
of any parser. The extreme case is when the only field that can
differentiate non-terminal types is near the end of the input.

In variable systems such as an Intrusion Detection System (IDS),
the user will be the author of the grammar that needs to be parsed.
When generating these systems, users should not be expected to be
versed in writing optimal grammars. Therefore it is expected that
the user creates a grammar where any of the cases of extreme slow-
down may exist. Nevertheless, even in the standard case, lookahead
has the potential for a performance improvement.

The lookahead process achieves its performance boost by elim-
inating general backtracking and correcting some of the ineffi-
ciencies identified above. The process does so by determining the
correct child non-terminal in a grammar decision for the current
parse tree. This is accomplished through parsing the value of a field
in the child non-terminal and then matching it to a set of unique
pre-defined constants in the grammar for each type.

Since the concept of lookahead is classical in parsing, there has
been multiple different approaches within the research community.
The ANTLR LL(*) Parser [15], Zebu Protocol Parser [2] andHammer
parsing library [19] all are examples of such systems. Although,
each of these systems share a similar downfall in that they are
general parsing solutions. They can only be generated through
a Backus-Naur Form (BNF) grammar, in which case lookahead
parsing is always possible due to non-terminal structure. Our parser
system deals with network parsing for an IDS, which does not use
BNF grammars, but a description of a protocol as written by a
network engineer. Even Zebu which is also a network protocol
parser, uses a modified BNF since it only functions for HTTP-like
protocols.

In the case of binary protocols, the specificationmust be analyzed
for lookahead opportunities. Here lookahead can only occur if the
structure of the protocol allows half-parse identification through
value restrictions. The previous work by ElShakankiry et al. [4]
implements an LL(1) lookahead for binary protocols, which while
useful, is limited in its abilities. Being LL(1), the approach only
checks one field of each non-terminal, which is not sufficient to
differentiate types in many situations. In parsing theory, Parr et
al. encounter the same issue with LL(1) parsers and propose that
parsers need k > 1 lookahead [18].

With overall internet data transfer speeds rapidly rising to over
one gigabit per second with the dawn of commercial fibre optic
networking [11], there is a need to improve parsing capabilities
to process incoming data. Transfer speeds over local Ethernet can
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Figure 1: The LL(k) optimization project phases

have even harsher requirements for parsing. The active Ethernet
IEEE Standards of 802.3bz [9] and 802.3cb [10] from 2016 and 2018
respectively, specify speeds of a minimum of 2.5 Gbps, up to a
maximum of 5.0 Gbps. Parser systems on these local networks
must then be able to process at the minimum speed otherwise
they will lose input data. When an IDS operates on these high-
bandwidth networks using an inadequate parser, it causes large
adverse effects on the detection capabilities. If the parser cannot
process at the network speed, a queue of input data continues
to build until it flushes the entire backlog. When this occurs, the
flushed input is allowed through the IDS without any analysis
which creates an opportunity for malicious data to bypass the IDS
and infect the network. Therefore, optimizing the parser increases
the maximum bandwidth it can handle, reducing the potential of
this latter scenario to occur.

Figure 1 describes the four phases of our work, with the initial
effort containing manual protocol specific analysis and the latter
portion entailing the construction of the automatic, protocol inde-
pendent parsing. A manual lookahead analysis of the Real-Time
Publish-Subscribe Protocol (RTPS) and the reengineering of its
current backtracking parser into a LL(k) parser is discussed in Sec-
tion 3.1 and Section 3.2. We discuss the design of an annotation
that will model the LL(k) parsing algorithm in Section 3.3. The
newly created automated protocol independent lookahead system
is discussed in Section 3.4. The automated code generation of the
lookahead parser is then presented in Section 3.5.

We validate our approach using a set of standard performance
metrics and parsing criteria. From previous optimization work on
the parser generator by ElShakankiry et al. [4] we set the metric
that performance must increase by at least 6% based on the past
comparable modifications using the same data set. The optimized
lookahead parser must also satisfy the qualities of adequate pars-
ing for real-time capabilities and system reliability. The proposed
optimization is evaluated in Section 4.

2 BACKGROUND
2.1 Network Protocol Parser Generator
The focus of this work is to optimize an existing Network Protocol
Parser Generator by ElShakankiry et al. [4], used in the Intrusion
Detection System (IDS) by Hasan et al. [5, 20]. The system gen-
erates parsers as a set of functions, in the C language for binary
network protocols. The protocols are described in a custom specifi-
cation language called SCL [12]. Each SCL file will describe a single
protocol and will be individually used as an input for the parser

generation. The entire generator is written in the TXL[3] source
transformation language, as a pipeline of multiple TXL scripts. TXL
pattern matching is used for several annotation processes on the
original SCL protocol description, including unique naming for dec-
larations and references and optimization markup. Once annotated,
pattern matching is again used for a one-to-one transformation of
SCL descriptions of data structures into corresponding C structs
for a header file. Following that there is a new transformation from
the same annotated SCL file with a one-to-one transformation of
the data structures into the functions to parse them. Supporting
helper functions are also generated as necessary. The final output
of the generator is then a set of header and source files, with one
file dedicated to each input specification.

2.2 The TXL Source Transformation Language
TXL is a language designed for source to source transformation and
rapid prototyping in software systems [3]. It has evolved over time
to become an industry standard general purpose source transforma-
tion tool, suited to a wide array of software reengineering tasks. A
TXL source transformation is a twofold process. First a context-free
grammar set is defined for each of the source languages. The TXL
engine then derives a parser from the defined grammar and uses it
to process the input in a set of by-example source transformations.
The rules and functions in TXL are written to match the contextual
information of the input language using grammar elements and
transform the input to a specified target language.

2.3 Structure and Context-Sensitive Language
SCL [12] is a language extension to ASN.1 that provides a set of
useful mechanisms to define binary network protocols. ASN.1 is a
formal notation used for describing data transmitted by telecom-
munications protocols, regardless of language implementation and
physical representation of the data [8]. SCL extends the ASN.1 no-
tation by adding XML style markup and additional data types. SCL
was designed based on ASN.1 to provide a familiar notation for
Network Engineers to specify their protocols.

An SCL protocol description consists of three main elements: a
program header, type decisions and rule definitions. Listing 1 provides
an SCL specification example of a Simple Payment Protocol (SPP)
for the payment system of a retailer. The module begins with the
program header in line 1, which defines the protocol name. Each
order of the payment system is represented as the root Protocol Data
Unit (PDU) type defined on lines 3-6, containing the ORDER_HEADER
and the PAYMENT. The order header on lines 8-15 is an example of a
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1 SPP DEFINITIONS ::= BEGIN

2
3 PDU ::= SEQUENCE {

4 header ORDER_HEADER (SIZE DEFINED),

5 paid PAYMENT (SIZE DEFINED)

6 } (ENCODED BY CUSTOM)

7
8 ORDER_HEADER ::= SEQUENCE {

9 cost INTEGER (SIZE 2 BYTES),

10 itemCount INTEGER (SIZE 1 BYTES),

11 items SET OF INTEGER (SIZE CONSTRAINED)

12 }

13 <transfer >

14 Forward { CARDINALITY(items) == itemCount }

15 </transfer >

16
17 PAYMENT ::= (CREDIT | GIFT_CARD)

18
19 CREDIT ::= SEQUENCE {

20 cardNum OCTET STRING (SIZE 4 BYTES),

21 secCode INTEGER (SIZE 1 BYTES),

22 billingAdd OCTET STRING (SIZE 8 BYTES),

23 }

24
25 GIFT_CARD ::= {

26 cardNum OCTET STRING (SIZE 4 BYTES),

27 cardPin INTEGER (SIZE 1 BYTE)

28 }

29
30 END

Listing 1: An SCL-based protocol specification example

rule definition that describes the contents of the order. It also has a
constraint on the length of the list of items on line 14, where the
cardinality must be the specified value. Finally, the payment type
on line 17 is a type decision which specifies that the paid field of
the PDU is an opaque container that can hold one of the two rule
definitions of CREDIT or GIFT_CARD. It is then up to an external
system to determine which type is inside the instance of paid in
the PDU to decode the payment information of the order.

The SCL transfer block serves the most significant role both
for the original parser developed by ElShakankiry et al. as well as
our optimization. The transfer markup specifies the relevant con-
straints when decoding the data through parsing. The two transfer
statements that the parser must consider when decoding any packet
are specified using Back and Forward blocks in SCL. They both rep-
resent a conditional statement that must hold true during a parse.
Otherwise, the packet is determined to be malformed and must
fail the parse. Using the Back constraint, the condition is evaluated
once the decoding of the data is complete. Similarly, in a Forward
constraint, the condition is evaluated before or during the decoding
of the data. Our primary concern is the Back constraints as they
allow us to look ahead using values that must hold true for a parse
to succeed.

2.4 The Real-Time Publish-Subscribe Protocol
The Real-Time Publish-Subscribe (RTPS) protocol [14] is designed
by the Object Management Group (OMG) for unidirectional data
exchange on multicast systems. It is a protocol where a set of appli-
cations publish data to the local caches of subscribers. A standard
RTPS message is defined in Figure 2, which is composed of a header
and a set of submessage elements in a type decision scenario. There
are nine different types of submessage in RTPS, representing the
main functionality of the protocol. For this paper, we will consider
a simplified version of the RTPS protocol with four types of submes-
sages in the type decision. This simplified version consists of the
Heartbeat, Data, Data(P) and Data(R) submessages as defined by
the protocol. We have excluded the Info_dst, Info_ts, Acknack
and Gap submessages as they are structurally similar to the heart-
beat message. The Data(W) is also excluded due to its similarity to
the Data(P) and Data(R).

Message Header1 1

Submessage

 Submessage 
Type 1

1
1..*

Submessage
Element1  *

 Submessage 
Type 2

 Submessage 
Type n

Figure 2: The RTPS PDU structure

The submessage level definition of the simplified RTPS proto-
col in SCL is defined in Listing 2. The SUBMESSAGE element in the
RTPS PDU of Figure 2 is specified by the SCL type decision def-
inition on lines 1-2 where it can be one of the four types. Each
submessage sub-type in the remainder of the figure has its own
rule definition that defines it and any constraints on its data fields.
Each of these submessage rule definitions also have one or more
back statements that place a value restriction on fields, which can
be used in lookahead analysis.

3 OPTIMIZING THE PROTOCOL PARSER
We conduct a brief packet analysis on a capture from a simulated
Air Traffic Control network implemented using RTPS. The packet
capture represents the standard network traffic our IDS experi-
ences, where it was revealed that out of the total 677, 326 packets,
98.08% were RTPS packets. Additionally, in those packets, there
were 1, 388, 354 SUBMESSAGE type decisions. It was also discov-
ered that 9, 654, 268 backtracks were required to parse all of those
SUBMESSAGE elements using the original parser by ElShakankiry et
al. This analysis indicates a clear inefficiency with the parsing of
RTPS SUBMESSAGE type decisions in the original parser and led us
to develop the optimization approach presented in this paper.
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1 SUBMESSAGE : : = (HEARTBEAT | DATA | DATA( P )
2 | DATA(R ) )
3
4 HEARTBEAT : : = SEQUENCE {
5 k ind INTEGER ( SIZE 1 BYTES ) ,
6 f l a g s INTEGER ( SIZE 1 BYTES ) ,
7 nextHeader INTEGER ( SIZE 2 BYTES ) ,
8 r e ad e rEn t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
9 w r i t e r En t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
10 f i r s t S e q OCTET STRING ( SIZE 8 BYTES ) ,
11 l a s t S e q OCTET STRING ( SIZE 8 BYTES ) ,
12 count INTEGER ( SIZE 4 BYTES )
13 } (ENCODED BY CUSTOM)
14 < t r a n s f e r >
15 Back { k ind == 7 }
16 </ t r a n s f e r >
17
18 DATA : : = SEQUENCE {
19 k ind INTEGER ( SIZE 1 BYTES ) ,
20 f l a g s INTEGER ( SIZE 1 BYTES ) ,
21 nextHeader INTEGER ( SIZE 2 BYTES ) ,
22 e x t r a F l a g s INTEGER ( SIZE 2 BYTES ) POS ,
23 q o sO f f s e t INTEGER ( SIZE 2 BYTES ) ,
24 r e ade rEn t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
25 wr i t e r En t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
26 wri terSEQ INTEGER ( SIZE 8 BYTES ) ,
27 i n l i n eQo s QOSPARM ( SIZE DEFINED ) OPTIONAL ,
28 s e r i a l i z e d D a t a OCTET STRING ( SIZE CONSTRAINED )
29 } (ENCODED BY CUSTOM)
30 < t r a n s f e r >
31 Back { k ind == 2 1 }
32 Back { w r i t e r En t . k ind == 2 | | w r i t e r En t . k ind == 3 }
33 </ t r a n s f e r >
34
35 DATA( P ) : : = SEQUENCE {
36 k ind INTEGER ( SIZE 1 BYTES ) ,
37 f l a g s INTEGER ( SIZE 1 BYTES ) ,
38 nextHeader INTEGER ( SIZE 2 BYTES ) ,
39 e x t r a F l a g s INTEGER ( SIZE 2 BYTES ) ,
40 q o sO f f s e t INTEGER ( SIZE 2 BYTES ) ,
41 r e ade rEn t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
42 wr i t e r En t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
43 wri terSEQ INTEGER ( SIZE 8 BYTES ) ,
44 i n l i n eQo s QOSPARM ( SIZE DEFINED ) OPTIONAL ,
45 s e r i a l i z e d D a t a PARTICIPANTS ( SIZE DEFINED )
46 } (ENCODED BY CUSTOM)
47 < t r a n s f e r >
48 Back { k ind == 2 1 }
49 Back { w r i t e r En t . k ind == 1 9 4 }
50 Back { w r i t e r En t . key == 2 5 6 }
51 </ t r a n s f e r >
52
53 DATA(R ) : : = SEQUENCE {
54 k ind INTEGER ( SIZE 1 BYTES ) ,
55 f l a g s INTEGER ( SIZE 1 BYTES ) ,
56 nextHeader INTEGER ( SIZE 2 BYTES ) ,
57 e x t r a F l a g s INTEGER ( SIZE 2 BYTES ) ,
58 q o sO f f s e t INTEGER ( SIZE 2 BYTES ) ,
59 r e ade rEn t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
60 wr i t e r En t ENTITYID ( SIZE DEFINED ) BIGENDIAN ,
61 wri terSEQ INTEGER ( SIZE 8 BYTES ) ,
62 i n l i n eQo s QOSPARM ( SIZE DEFINED ) OPTIONAL ,
63 s e r i a l i z e d D a t a TOPICS ( SIZE DEFINED ) OPTIONAL
64 } (ENCODED BY CUSTOM)
65 < t r a n s f e r >
66 Back { k ind == 2 1 }
67 Back { w r i t e r En t . k ind == 1 9 4 }
68 Back { w r i t e r En t . key == 4 }
69 </ t r a n s f e r >

Listing 2: Four RTPS submessage structures in SCL

3.1 The Lookahead Mechanism
Since the type decision mechanism using the one pass LL(1) in the
original parser was not efficient and effective for RTPS SUBMES-
SAGE types, we conducted a manual k pass lookahead analysis to
determine the optimization possibilities. We examined the SCL def-
inition of the SUBMESSAGE type decision as defined in Listing 2. The
Back statements of each type definition in the SCL specification are
used to set the restricted values for different fields. For example, the
statement Back {kind == 21} in line 48 for the DATA(P) definition
indicates that the value of the kind field must be 21.

The HEARTBEAT type can be identified by the existing single pass
lookahead as it has a unique value of 7 for the kind field in the
SUBMESSAGE type decision. However, DATA, DATA(P) and DATA(R)
share the same value restriction of 21 on the kind field. Therefore,
the LL(1) approach would be unable to determine a submessage’s
type from the first restriction; i.e., when the value 21 is parsed it
could be any one of three possible types. The lookahead process
must then continue past pass one for these three data types.

Examining the value constraints on the three remaining data
types in Listing 2, they all share a restriction on the writerEnt.kind
field. In addition, the intermediate fields of flags, nextHeader and
readerEnt create an equal byte offset of 7 bytes across all types.
The DATA type is then uniquely identified by a restricted value of
either 2 or 3 of the writerEnt kind field, completing its lookahead.
The DATA(P) and DATA(R) types once again have a non-unique
value restriction of 194 on that field, requiring another pass of
lookahead to possibly differentiate the two.

The final pass of the lookahead examines the remaining Back
constraint on the writerEnt.key field. Both DATA(P) and DATA(R)
can then be uniquely identified through restricted values of 256 and
4, respectively. Additionally, since the writerEnt field is already
common with the last pass, the lookahead can proceed without
additional parsing as the byte offset would be null.

The results of our manual lookahead analysis indicate that a
lookahead parser can be generated for the SUBMESSAGE structure
based on its value constraints uniquely identifying each message
type. Expanding the same analysis to include the entire RTPS pro-
tocol suggested no additional type decisions in RTPS that could
be optimized by further lookahead when the existing LL(1) fails.
Based on the conducted analysis, we determine that optimizing
type decisions by looakahead analysis has three requirements:

(1) There must be some field vk , where k is the current looka-
head pass, that has a restriction on its value for all types in
the type decision.

(2) The byte offset, or total size of all fields in any type in the
type decision from either the beginning or the previousvk−1
value, to vk are equal to locate the data in the PDU across
all types.

(3) The value of vk must be unique across all types in the type
decision or there must be a vk+1 that can be evaluated in a
subsequent pass. With conflictingvk values, the type cannot
be resolved. If no vk+1 is found, the type decision cannot be
optimized by lookahead.

The automated LL(k) annotation process that we have implemented
realizes each of the requirements above during its analysis phase.
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3.2 The LL(k) Parsing Algorithm
We define the general case of our switch-parsing algorithm for
lookahead on type decisions in Listing 3. It runs on a parse-identify-
repeat concept for the fields with restricted values on them. We
first parse all fields indicated by the byte offset, including vk , to
retrieve the restricted value instance. We then perform a switch
statement based on the result of vk as shown in line 3.

If vk represents a unique value for any type then we have a
case statement on that value. There are two possible behaviour sets
inside any case statement. The first instance is when a unique value
fully defines a type as with Unique1Val on lines 4-7. Inside the
case block, we then call a newly defined version of the function to
parse that specific type identified by appending ¨_O¨ to its name.
This optimized version passes any fields that were already parsed
as part of the byte offset as parameters in addition to the standard
function parameters. Since the parsed fields are passed onward, no
effort is wasted re-parsing them in the typed parse function. After
parsing we save the data and the identifier for the type we parsed
in our result when successful.

If vk instead represents a conflicting case value, the second type
of case block instance will begin the next pass of the lookahead
as seen in lines 8-21. The process repeats for vk+1, retrieving and
switching until we reach the final vn , where n is the total number
of passes. At any point when the type decision is typed and parsed,
we exit the switch statement and return true to mark the parse as
successful. If typing is unsuccessful the switch will fall through to
the default case on lines 22-23 to mark the parse as unsuccessful.
This is to ensure that a malformed or malicious packet which may
possess a non-standard value for that protocol still fails the parse.
This new parse-identify-repeat lookahead algorithm replaces the
existing inefficient backtracking algorithm in our original parser.

Listing 4 presents the traditional backtracking algorithm. The
algorithm first tries to parse the type decision as one type (Lines
2-6) and if that fails, it reverts to the initial parse point and tries a
new type (Lines 7-11). This process continues until the algorithm
succeeds parsing a type or attempts all types without a success.
Significant effort is therefore wasted in trying to parse incorrect
types using the traditional backtracking approach. When the byte
offsets are large, the algorithm can parse the majority of a message
before determining it as the wrong type. All parsed work and re-
trieved values are therefore lost when backtracking and must be
reparsed on the next attempt. Examples of such are the cases of
parsing RTPS DATA(P) and DATA(R) messages.

3.3 Grammar Extension
To generate the source code for the LL(k) parser, we first needed
to annotate the SCL description of a protocol with a model of the
desired output code. We therefore proposed an XML style extension
to the SCL grammar that would accomplish the task of annotation.
In order to function as a robust solution, three requirements were
considered: it must encapsulate all the necessary details for code
generation; be able to be generated automatically from the initial
SCL description and; and finally, seamlessly integrate into the SCL
grammar. Figure 3 describes the addition to the SCL grammar, where
the base lookahead_block would be included sequentially after a
transfer block. Since the lookahead block is used in an automatic

1 bool parseTYPEDECISION(RESULT * result )::

2 FirstUnique = ParseField ()

3 switch (FirstUnique)

4 case Unique1Val :

5 ... Parse Type1_O ...

6 result ->type = TYPE1_VAL

7 break

8 case Unique23Val :

9 FieldTwo = ParseField ()

10 SecondUnique = ParseDefinedStruct ()

11 switch (SecondUnique ->Entry1)

12 case Unique2Val:

13 ... Parse Type2_O ...

14 result ->type = TYPE2_VAL

15 break

16 case Unique3Val:

17 ... Parse Type3_O ...

18 result ->type = TYPE3_VAL

19 break

20 default:

21 return false

22 default :

23 return false

24 return true

Listing 3: Optimized Lookahead algorithm

1 bool parseTYPEDECISION(RESULT * result )::

2 position = PDU ->curPos

3 remaining = PDU ->remaining

4 if ( ... Parse Type1 ... )

5 result ->type = TYPE1_VAL

6 return true

7 PDU ->curPos = position

8 PDU ->remaining = remaining

9 if ( ... Parse Type2 ... )

10 result ->type = TYPE2_VAL

11 return true

Listing 4: Unoptimized backtracking algorithm

TXL transformation into parser source code, each element will be a
one-to-one mapping from the block to source code to handle the
detail encapsulation. This new annotation block is then generated
on type decision rules.

An example of the full lookahead block that models the new
parsing for our simplified RTPS protocol is shown in Figure 5.
The entirety of the lookahead block is contained inside an XML
style <lookahead> header and footer. Each pass_level is a set of
statements representing another level of lookahead can be seen
grouped in lines 2-4, 5-10, and 11-14 respectively. These blocks then
map to the parsing algorithm’s switch statements. The initial @
[id] on the first line of each set represents the switching parameter,
which is the field with a restricted value that each type of the type
decision contains. Each of the following switch_case statements
represent one case statement with the type’s unique value of the
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⟨lookahead_block⟩ ::= <lookahead> {⟨pass_level⟩} </lookahead>

⟨pass_level⟩ ::= @ ⟨id⟩ {⟨switch_case⟩} END [⟨req_parse⟩]
{⟨new_level⟩}

⟨switch_case⟩ ::= ⟨id⟩ @ ⟨number⟩

⟨req_parse⟩ ::= <⟨parse_item⟩ {, ⟨parse_item⟩}>

⟨parse_item⟩ ::= ⟨id⟩ @ ⟨parse_size⟩

⟨parse_size⟩ ::= ⟨number⟩
| ⟨id⟩

⟨new_level⟩ ::= ⟨id⟩ {, ⟨id⟩} @ ⟨number⟩

Figure 3: Grammar for the lookahead block

1 <lookahead >

2 @ kind

3 HEARTBEAT @ 7

4 END <kind @ 1> DATA(P), DATA , DATA(R) @ 21

5 @ writerEnt.kind

6 DATA @ 2

7 DATA @ 3

8 END <flags @ 1, nextHeader @ 2, extraFlags

9 @ 2, qosOffset @ 2, readerEnt @ ENTITYID ,

10 writerEnt @ ENTITYID > DATA(P), DATA(R) @ 194

11 @ writerEnt.key

12 DATA(P) @ 256

13 DATA(R) @ 4

14 END

15 </lookahead >

Listing 5: Full lookahead block checking past LL(1)

restricted field. The END represents the final line of the current
pass_level and contains the closing information for the next one.

The req_parse is an optional element inside the < > set that
contains all the fields and their corresponding size, or the types that
are part of the byte offset, including the switching parameter. These
must then have their value retrieved before the switch case can be
evaluated. This translates to statements that declare variables of the
identified size or type for the fields. They then retrieve the correct
number of bytes sequentially from the packet, parsing the fields. In
the case of the first pass in line 4 of Listing 5, only the kind field
must be retrieved before evaluating a switch statement on kind. In
the second pass on lines 8-10 several fields must be parsed before
the switch statement can be evaluated on writerEnt. Finally, the
new_level in Figure 3 is a set of statements that show all the types
that did not have unique restricted values. If not empty, these types
would become the subject of the next level of the lookahead in
order to check if there is anything further that can differentiate
them. This corresponds to the case statement holding the next
switch statement described in the next pass_level. In line 4 of
the example in Listing 5, DATA(P), DATA and DATA(R) must have a
value of 21 for kind; i.e., they cannot be differentiated in the initial
switch statement. Therefore, the case for the value 21 would hold

a new switch statement to differentiate the two through a new
restricted field.

3.4 Automatic SCL Analysis
After developing the lookahead annotation mechanism, we devel-
oped an automated approach to analyze any protocol description
and search for scenarios where lookahead parsing can be applied. A
TXL script was written to run against the SCL protocol descriptions
before code generation. Our approach provides a robust solution
that can perform k pass lookahead analysis on any SCL input and
produce an output SCL file where lookahead_block elements are
annotated to any optimizable type decisions. The approach is fully
automated and therefore requires no human interventions.

Lookahead Pass One. The k pass lookahead system functions
off of pattern matching in the TXL language. This allows us to
define general case patterns in the SCL grammar that correspond to
the information related to lookahead. We begin the first pass of the
lookahead by taking advantage of the existing one pass lookahead
in the existing parser generator by ElShakankiry et al. This LL(1)
system examines only the first restricted value field of types in a
type decision. To determine if it can identify types based on the
first field, it annotates the type decision in the following form:

FULLID ˆ SHORTID [@ optimizable] ::= (TYPE1 @ SIZE VALUE
| TYPE2 @ SIZE VALUE).

When annotation of the type decision is complete, it checks
if all the annotated values are unique. If that is the case, the @
optimizable tag is added to notify the code generator to generate
a single field lookahead parse. While this method is functional, it
creates a messy and hard to understand annotation. Therefore, our
lookahead analysis only attempts lookahead on any type decisions
that do not have the @ optimizable tag to save processing time.
On any type decisions that do not have the tag, we retrieve the
unique value information directly from the existing annotation.
Any missing information, such as the field name can be discovered
from the rules directly. It is then used in the construction of the
first level of the lookahead block.

Arbitrary Recursive Lookahead. We define a recursive algo-
rithm for the remaining passes of the lookahead. This involves a
three step analysis process to determine if any restricted value field
allows for a type to be identified in a type decision. In the first step,
we analyze the SCL back statements in the definitions of one type
in the type decision for a new common restricted value field. In the
remaining types, we check the kth restricted value, which must
be on the same field across all types to satisfy requirement one of
lookahead. This corresponds to detecting the field and value from
the kth back statement of the pattern Back {ID == VALUE}. If the
ID matches for all types, we proceed to the next step.

The second step is to examine the intermediate fields in each
of the types to meet the second requirement of the lookahead
process. Past pass one, we would always have intermediate values
to examine to ensure an equivalent byte offset. We first retrieve the
previous position in the types from the req_parse of the previous
pass and then select one type definition to sample. We collect the
field names and sizes of all items between the previous switching
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parameter and the new restricted field. This information is then
recorded in a list and compared to the definition of each of the other
remaining types in the type decision. As long as every comparison
returns a true result, we proceed to step three.

The third and final step is to determine which types can now be
uniquely identified, to complete the third requirement of lookahead.
The kth back statement in each type is evaluated again to examine
the restricted value. Each encountered value is stored in a used
value list, along with the type it belongs to. Then when the next
type is evaluated, its restricted value is first compared to the used
list to see if it is already present. If so, it is added to a conflict list
instead as it is not unique. Once all remaining types have been
analyzed, the conflicting values already in the used list will be
removed and added to the conflict list instead. This information is
then passed forward to the annotation phase of the current pass.

This recursive descent process continues until one of two con-
ditions are met. The first termination condition is triggered when
there is an empty conflict list at the end of any pass of the algo-
rithm. This indicates successful identification of each type in the
type decision from a subset of its restricted value fields. At this
time the algorithm appends the constructed lookahead block to
the type decision in the SCL for future code generation. The other
termination condition is a failure fall-through when the algorithm
fails to meet the requirements for any of the three steps. This in-
dicates that the algorithm has failed to find a subset of predefined
values that can support a lookahead type decision. At this point,
the current progress of the lookahead block is scrapped, as we only
ever append a complete lookahead block to the type decision.

Although k is defined as unbounded for our algorithm, one of
the two exit conditions would always trigger, causing the algorithm
to terminate. The unbounded k allows the algorithm to find an
optimal parse through lookahead when possible, as it can check
an unlimited number of back statements. In theory, an unbounded
k could potentially have the algorithm unsuccessfully searching
for a differentiating value set for a long time. In practice, protocols
traditionally have a limited number of fields with required or iden-
tifying values, assigning a finite value to k . Additionally, since this
algorithm runs only once during the setup of a new system, a costly
analysis phase can only ever slow down the build time, which is
not a concern in the requirements of the system.

3.5 Parser Code Generation
The parser generation process with lookahead is depicted in Fig-
ure 4. We have introduced a new pattern of a type decision with
a lookahead block, where previously type decisions did not have
any additional blocks. Therefore, we must add a new TXL rule to
the current generator to handle the pattern in addition to the cur-
rent type decision transformation rule for standard backtracking
type decisions. This new transformation rule follows the mapping
of the lookahead block to source code and creates the lookahead
function that parses the type decision element. As part of the code
generation, supporting functions to parse the types must also be
generated. We define another TXL rule to create the optimized
function to parse the types inside the type decision and append
an ¨_O¨ to the name, as specified in Section 3.2. In the case of the
HEARTBEAT type the function declaration would be of the following

     SCL Protocol        
    Specifications

Existing
Annotation

Process

Lookahead
Annotation

   Modified 
Code 

Generation    

  Generated    
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 .c and .h

Figure 4: The parser generation process

form that contains all old parameters including the parsed kind field:

bool parseHEARTBEAT_O (HEARTBEAT * heartbeat, PDU *
thePDU, char * progname, uint8_t * kind, uint8_t
endianness);

The lookahead analysis and code generation of the system must
only be completed a single time under standard use. Additionally,
the lookahead analysis in our system is completed before code gen-
eration instead of occurring as packets arrive during runtime. This
allows the system to generate an optimized parser at no effective
cost to the runtime bandwidth.

4 EVALUATION
We evaluate the success of our proposed k pass lookahead optimiza-
tion by comparing the generated system for the RTPS parser by the
base version generated by ElShakankiry et al. [4].

Real Time Parsing. To correctly assess the Real Time Parsing
requirement of the optimization we first measured the performance
of the systems. Testing was performed by running both parsing
algorithms in isolation, using a 1.678 GB packet capture of network
data. The sample is generated using the RTI version of the Data
Distribution Service (DDS) [21] and is similar to the traffic the
parser would receive under normal use, containing RTPS, IGMP,
ARP and NTP packets.

Table 1: Specifications for the test hardware platforms

System CPU Frequency Memory
Raspberry Pi 2 4 Core−0.90 GHz 1 GB

Low Tier 2 Core−3.00 GHz 3.5 GB
Mid Tier 4 Core− 3.00 GHz 16 GB
High Tier 6 Core 4.30−GHz 32 GB

To determine the scalability of the optimization across all sys-
tems, we test the parsing algorithms on varying hardware. This
includes a range of low-end to high-end consumer hardware speci-
fied in Table 1, using Linux Mint 19. A full set of 200 parses were
performed for both parsers to measure the bandwidth of the sys-
tem, as a measure of their ability to parse data. An average value
was then calculated from the 200 trials to negate the possibility of
varying system load affecting the measurements.
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Figure 6: Relative speedup of the lookahead algorithm

Figure 5 demonstrates the performance differences between the
parsing algorithms on each platform. Across all hardware, the looka-
head parser provides a performance increase over the backtracking
parse algorithm. Figure 6 depicts the amount of relative speedup
between the base and lookahead algorithms, as well as our mini-
mum speedup metric as a baseline. From the chart it can be seen
that the performance value is dependant on the hardware, with the
lowest end achieving a 16.02% increase and the high end achieving
34.51%. Overall, the relative speedup is not only positive in all cases
but it increases steadily with each upgrade in hardware.

Considering the performance results, we observe a clear speedup
with the LL(k) optimization over the non-optimized version. Even
the lowest speedup of 16.02% surpasses the real time parsing re-
quirement of a 6% increase in bandwidth, while the best increase
of 34.51% completely outperforms it. Additionally, where the base
system was not able to reach the required 2.5 Gbps of the current
Ethernet standard, the lookahead parser reaches those speeds even
on mid-tier hardware. These results indicate that our optimization
approach is successful in improving the real-time parsing capabili-
ties of the parser.

Additionally, since parsers are traditionally bottlenecked by the
hardware they operate on, the scalability with the better hardware
indicates further success. In each case where the hardware is im-
proved, the base system is able to achieve a higher bandwidth,
independent of any other changes. In accordance with this higher
computing power, the lookahead algorithm is able to gain an even
larger relative speedup than the previous hardware tier. With this
positive relationship, it indicates that the optimization is able to
present an even larger net increase of bandwidth on more powerful
hardware. For example, the mid-tier hardware presented a net in-
crease of 570.5 MBit/s while the high tier hardware experienced a
net increase of 850.7 MBit/s from the same optimization. Therefore,
the new lookahead approach does not suffer from any scalability
costs and presents a clear trend that allows performance to increase
even further with better hardware.

System Reliability. To correctly assess the Reliability of the
optimized system, we must ensure that its ability to parse pack-
ets for all protocols has not been affected. Therefore, to validate

the reliability we perform two different tests. We first inspect the
parser’s ability to successfully parse packets in a traffic sample. We
again run both versions of the parser on the same 1.67 GB capture
of network data as before, while recording the statistics. To accu-
rately judge reliability, we must both inspect the parse count for
RTPS and all other protocols. In this test, the base system correctly
parsed 10, 707, 581 total packets, out of which 10, 518, 612 were
RTPS packets. The test is then repeated with the lookahead parser,
which achieves the same packet success count. Since the packet
parse count remains unchanged, there is no unexpected behaviour
causing parses to fail in the generated parses for all protocols.

Another aspect of reliability that we must also evaluate is the
details of memory usage by our parsers. For a parser to be reliable
it must not only be able to parse packets consistently, but it must be
able to run uninterrupted. To validate the parser’s ability to execute
indefinitely, we must ensure it has no memory leaks during stan-
dard operation. We use the Memcheck memory error detector by
Valgrind [23] for this evaluation. The tool was run with the system
executable to analyze the heap while the parser performed its tasks.
For the 1.67 GB packet capture it determines at program termina-
tion that 0 bytes remain in 0 blocks on the heap. Additionally, there
is a total of 37,079,533 allocations and a matching 37,079,533 frees
on the heap with a total of 2.61 GB allocated over the execution
lifetime. This ensures that the system will have no issue being run
for long periods to parse real-time data.

5 RELATEDWORK
Parsing or the decoding of an input is an important topic across all
fields of computing, not only in Network Security. Due to its large
prevalence and history, several systems have emerged as the top
options in parsing technologies. As the problem of parsing theory
and efficient parsing is a classic one, there are countless solutions
of different ways to create lookahead parsers. We review solutions
that also implement lookahead strategies such as ANTLR [15],
ANTLR4 [16], Zebu [2] and Hammer [19].

ANTLR LL(*) Parser Generator. The ANTLR LL(k) system is
one of the most common parser generator frameworks, designed by
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Parr et al. [17] in 1995. The base system is a classical example of a
general parser generator. Upon being presented with a context-free
grammar, it will create a LL(k) parsing system that can decode any
data encoded in that grammar.

Since then, the parser generator has been continually optimized
and improved to create a LL(*) parsing strategy, and an associated
grammar analysis system [15]. LL(*) is a parsing optimization that
throttles up from the conventional k ≥ 1 to an arbitrary lookahead.
A grammar augmented with syntactic and semantic predicates and
embedded actions is used as the input to the ANTLR generator.
Their syntactic predicates allow for the arbitrary lookahead of the
LL(*) decision. They are implemented as grammar fragments that
must match the desired input, much like the XML style annotations
that we use in our SCL grammar.

ANTLR4 is an improved version that enhances the work of the
previous LL(*) parse, introducing the ALL(*) parsing strategy [16].
In the ALL(*) strategy, they again progress the previous method by
moving the grammar analysis to parse time. This allows ALL(*) to
create a LL(*) decision set for all the non-left recursive grammars,
where LL(*) on its own only worked efficiently with LL-regular
grammars.

Although the arbitrary lookahead of LL(*) is a more efficient
approach, lookahead opportunities must be developed by analyzing
the grammar only, due to the general nature of ANTLR. This is a dif-
ferent approach from our proposed LL(k) strategy as its lookahead
is dependent on semantic constraints placed on the data structure
in the input specification. As a result, our arbitrary lookahead will
not be able to cease optimization attempts when the lookahead
decision is too complex. It will always iterate through every possi-
bility for lookahead, but due to the nature of our constraints, the
upper bound will rarely exceed k ≤ 5. With regards to the ALL(*)
parsing strategy, we employ a similar optimization, as we perform
our lookahead analysis while generating the parser. As a result,
the generated parser does not have to deal with any lookahead
checking as it parses its input.

ANTLR is a general-purpose parsing framework which cannot
be easily compared to our system. Its general case nature requires
a BNF grammar for the source to be parsed. Our generator respec-
tively uses a specification in SCL of the network protocol to be
parsed due to its IDS centered design. While it is possible to convert
a protocol description to BNF, it is outside the scope of this research.
However, we make available the input packet captures1 used in our
evaluation for future studies.

Zebu Network Protocol Parsing. Zebu is a domain-specific
language that is an annotated version of Augmented BNF (ABNF),
used to generate network protocol parsers for HTTP-like proto-
cols. It uses a unique lookahead strategy to optimize their parsing.
They implement a two-layer parsing tactic with a coarse-grained
generic parser and multiple dedicated parsers. The generic parser
acts as their lookahead, searching for high-level message elements
in a packet while ignoring everything else. Once a high-level ele-
ment such as a header is found, the generic parser is paused and a
dedicated parser for that particular element is executed. After its
completion, the generic parser resumes its lookahead.

1http://pyxis.ece.queensu.ca/data/parser/

Zebu uses a standard input format of ABNF with only slight
modifications, whereas our system requires an annotated version of
the industry standard ASN.1. This allows Zebu to be slightly simpler
for a first-time developer to pick up and begin using comparatively.
Instead of a pattern matching tool like TXL, Zebu annotations are
processed by the PCRE library [7]. They are processed as an input
of regular expressions and then transformed into stub functions.
The use of a library provides a much lower learning curve for other
developers to extend the system in the future. In contrast, our work
relies on the TXL language for the annotation and code generation.
While TXL is a powerful tool, it has a significant learning curve to
begin future additions.

Zebu’s two-layer lookahead is an interesting strategy but in a
different domain as our work. Our goal is to create a zero cost
lookahead optimization for network protocols through lookahead
before runtime. Zebu comparatively generates a parser that com-
pletes its lookahead during the parsing process. This mid-parse
lookahead carries the downside of an added cost as it requires addi-
tional processing time to resolve types that ours does not. Despite
this latter difference, the two-layer lookahead is a tactic that could
still be applied to parser generation as a special lookahead routine.
In a protocol with complicated semantic constraints, the two-pass
system could aid in the detection and verification of an optimizable
data structure. This would remove the need to search through every
reference of the semantic constraints as we would have dedicated
techniques for each constraint.

Hammer. Hammer is an open sourceC library that can be used
to create LL(k) recursive descent parsers. It is specifically designed
to parse binary protocols, which is only a subset of the protocols
that our system must generate parsers for. While Hammer also
applies the LL(k) optimization at generation time like our proposed
optimization, it has little to no documentation despite its open
source nature. Therefore the actual optimization methodology can-
not be determined without reengineering their source code.

6 FUTUREWORK
While our optimization in its current state has successfully accom-
plished its goal of a significant performance increase, there are
multiple extensions that will allow the optimization to be relevant
in additional scenarios and provide further performance benefits.

Partial Lookahead Parsing. There are cases where perhaps
only half a type decision can be uniquely typed by k levels of looka-
head. Our optimization is currently an all-or-nothing approach that
will revert to a backtracking parse if the entire type decision cannot
be uniquely identified. We propose that the system be extended to
generate the lookahead case statement parse for any structures that
can be typed with lookahead. The type decision can then be com-
pleted by generating a backtracking parse in the conflicting case
statement for the remaining types. This will eliminate a non-trivial
amount of backtracking in most cases, raising the overall effective-
ness and reach of this optimization. This change will only require
slight modifications to the annotation and code generation. The
removal of the annotation if the all-or-nothing process fails must
be adjusted to keep the current annotation progress as-is. Then the
code generation must have a slight adjustment to where if it does
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not find an empty <new_level> at then end of the annotation then
it must generate the backtracking parse for those remaining cases.

Evaluation of Complex Constraints. The system currently
only evaluates simple Back constraints on fields to determine the
unique values. In the vast majority of cases this will run unimpeded
as protocols traditionally have only specific integer constraints on
their fields. Although there are cases in binary protocols such as in
SMB2 [13], where we require a complex Back statement in the form
of Back{padding == 8 - ((64 + 36 + dialectCount * 2) %
8)}. This is because SMB2 uses variable length padding that must
ensure that the next field is 8-byte aligned. Due to TXL requiring
exact pattern matching, our lookahead analysis will only match on
back statements consisting of a single defined value on the right
side of the equality condition. As a result, this could mark a type
decision as unoptimizable when in actuality the complex constraint
would evaluate to unique values. Although these complex require-
ments are uncommon across most binary protocols, it would still
be beneficial to increase the number of Back constraints patterns
that the algorithm can recognize.

7 CONCLUSION
In this paper, we presented an optimization approach to improve
an existing one pass lookahead parsing system and extend it to k
passes. The two-module system that we have presented is a secure
generic solution that is able to conduct a k pass lookahead on any
network protocol defined in SCL. We have also defined a generic
XML style annotation that can even be used with non-network
protocol parser generators for lookahead analysis. Additionally,
it is fully automatic requiring zero user input to function. Due to
its pattern matching nature it can be easily expanded to handle
special cases as they arise through the addition of new TXL rules
for specific patterns. The proposed lookahead approach eliminates
a large amount of wasted effort from backtracking to improve
the bandwidth of the system. As a result, it is able to achieve a
relative speedup as high as 34.51% to improve the real-time parsing
capabilities of the system, based on our evaluation presented in the
paper. The proposed approach also avoids wasted effort by finding
lookahead opportunities before parser generation, requiring no
additional work during parser execution.
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