
Noname manuscript No.
(will be inserted by the editor)

Clone Detection in Matlab Stateflow Models

Jian Chen · Thomas R. Dean · Manar
H. Alalfi

Received: date / Accepted: date

Abstract Matlab Simulink is one of the leading tools for model based software
development in the automotive industry. One extension to Simulink is State-
flow, which allows the user to embed Statecharts as components in a Simulink
Model. These state machines contain nested states, an action language that
describes events, guards, conditions and actions and complex transitions. As
Stateflow has become increasingly important in Simulink models for the auto-
motive sector, we extend previous work on clone detection of Simulink models
to Stateflow components.

While Stateflow models are stored in the same file as the Simulink models
that host them, the representations differ. Our approach incorporates a pre-
transformation that converts the Stateflow models into a form that allows us
to use the SIMONE model clone detector to identify candidates and cluster
them into classes. In addition, we push the results of the Stateflow clone de-
tection back into the Simulink models, improving the accuracy of the clones
found in the host Simulink models.

We validated our approach on the Matlab Simulink/Stateflow Demo set.
Our approach showed promising results on the identification of Stateflow clones
in isolation, as well as integrated components of the Simulink models that are
hosting them.

Keywords Model · State Machine · Stateflow

J. Chen
School of Computing, Queen’s University
Kingston, Canada E-mail: chenj@cs.queensu.ca

T. Dean
Electrical and Computer Engineering, Queen’s University
Kingston, Canada E-mail: dean@cs.queesnu.ca

M. Alalfi
School of Computing, Queen’s University
Kingston, Canada E-mail: alalfi@cs.queesnu.ca

2 Jian Chen et al.

1 Introduction

Model Driven Engineering (MDE) has become popular in industry as a way
to build and maintain complex modern software. It is increasingly common
to develop software using model-based methodology in embedded software,
particularly in areas where risk to life or property is an issue such as the
automotive sector. Simulink1 is a modeling language that has been widely
used in the development of automotive embedded systems. One component
of Simulink is Stateflow2, an environment for modeling and simulating com-
binatorial and sequential decision logic based on hierarchical state machines
(i.e. state charts (Harel, 1987)) and flow charts. Developers use MathWorks
Simulink/Stateflow and model-based design to develop system models, verify
designs using stimulation, and generate production codes in industry.

In code-based software development, the simple reuse of code segments
by copy & paste can cause code clones. Koschke (Koschke, 2006) detailed the
root causes of code clones, and Roy and Cordy(Roy and Cordy, 2007) classified
these reasons into four categories: development strategy, maintenance benefits,
overcoming underlying limitations, and cloning by accident.

Similarly, in model-driven development environments, developers copy parts
of existing models and reuse them in new models resulting in model clones,
as has been observed in Simulilnk model development (Cordy, 2013). The po-
tential impact of identifying redundancy at the higher levels of abstraction
provided by models makes clone detection in models important since it can
help in testing design consistency and completeness before implementation. In
this paper, we describe extensions to SIMONE (Alalfi et al, 2012a) to detect
near-miss clones in Stateflow components.

This work is part of model pattern engineering project, one of Network
on Engineering Complex Software Intensive Systems for Automotive System
(NECSIS)3 projects, the purpose of which is discovery, cataloguing, and for-
malization of sub-model patterns in automotive models. Clone detection can
provide an initial approximation to the pattern set. Our work is in phase one of
the larger project, and the goal is to discover and identify common sub-model
patterns in a lager example model set obtained from our industrial partners
at General Motors.

This is an extended version of a paper presented at the International Work-
shop on Software Clones 2014 (Chen et al, 2014). In addition to the description
of clone detection in Stateflow models, this paper extends our previous paper
in several ways. We refine and present a definition of model clones for State-
flow similar to the previous definition we used for Simulink in SIMONE. We
show how the results of Stateflow clone detection can be used to improve the
detection of clones in the host Simulink models. Both detection and contextu-
alization were validated using the MATLAB demo set.

1 www.mathworks.com/products/simulink
2 www.mathworks.com/products/stateflow
3 www.necsis.ca

Clone Detection in Matlab Stateflow Models 3

Fig. 1 A simple example of a Stateflow block within a Simulink model

Fig. 2 A simple Stateflow chart example. The chart is the parent of the state A, state A is
the parent of the B, C, and D states. Exclusive state D1 and D2. Parallel state C1 and C2.
The chart also includes a history junction and a Simulink function, and transitions junctions

2 Background

This section gives an overview of some of the background needed to understand
our work. We begin by discussing Matlab/Stateflow models followed by an
overview of SIMONE, a near-miss model clone detector used in our research,
then we present our definition of model clones in Stateflow.

2.1 Stateflow Models

MATLAB4 is an interactive computing environment and high level program-
ming language. Simulink is an extension to MATLAB that provides a block
diagram environment for designing, modeling, and simulating reactive sys-
tems. Stateflow is an extension to Simulink that provides an environment for
modeling and simulating combinatorial and sequential decision logic based on
hierarchical state machines (i.e. state charts (Harel, 1987)) and flow charts.
Figure 1 shows a simple example of Simulink model that consists of a Sine
Wave block, a Scope block, and a single Stateflow block.

A set of graphical and nongraphical objects and the relationships between
those objects form a typical Stateflow chart. Each Stateflow block is an equiv-
alent of Stateflow chart in Simulink model. Figure 2 shows a simple Stateflow
chart model. The blocks in this example do not have an explicit purpose; they
only present a typical Stateflow model’s structure. A state can use a hierarchy
to express more complex models. The example in Figure 2 shows three levels
of hierarchy. State A is an outer state(or superstate); state B is a substate(or
child). State A is the parent of the state B, C, and D. Every superstate has a
decomposition, which can be exclusive(state D1 and D2) or parallel(state C1
and C2). When state C is active, then both state C1 and C2 are active. If
state D is active, then either state D1 or D2 is active.

In Matlab, all Simulink and Stateflow models are stored in model files with
the .mdl extension. A model file is a structured text file that contains blocks

4 www.mathworks.com/products/matlab

4 Jian Chen et al.

Model {
Name "powerwindow"
...
Simulink.ConfigSet {
$PropName "ActiveConfigurationSet"
$ObjectID 1

}
BlockDefaults {
ForegroundColor "black"
...

}
AnnotationDefaults {
HorizontalAlignment "center"
...

}
System {
Name "powerwindow"
...
Block{

BlockType SubSystem
Name "control"
...
System{

Name "control"
...
Block{

BlockType S-Function
...
Tag "Stateflow S-Function powerwindow 1"
...

}
}

}
...

}
}
Finite State Machines
#
Stateflow Version 7.6 (R2011b) dated Jul 8 2011, 18:16:10
#

Stateflow {
machine {
id 1
name "powerwindow"
...

}
chart {
...
}
state{
...
}
state{
...
}
...

}

Fig. 3 Snippet of the textual representation of the MATLAB power window demo model

Clone Detection in Matlab Stateflow Models 5

of text nested in braces with key-value pairs that describe the properties of
the model. The file starts with the Simulink model where all elements are
combined into a single Model section and stored in hierarchical order. Figure
3 shows an example of MDL file textual representation. The Model section
includes all the Simulink model elements and the model parameters, configu-
ration set, and configurations references. The BlockDefaults section includes
the default settings for all blocks in the model. The AnnotationDefaults sec-
tion includes default settings for annotations in the model. The System section
includes parameters that describe each system and subsystem in the model.
The subsystem is nested in the parent system. Each system section contains
blocks, lines, and annotations. Each Stateflow model is represented as a single
block in the Simulink model textual representation.

The Stateflow models are stored at the end of the same file, and all State-
flow elements form a single Stateflow block with linear structure. The textual
representation of Stateflow model does not follow the Simulink subsystem rep-
resentation. That is, the description of sub states are not nested within the
description of super states. Figure 4 shows an excerpt of the textual represen-
tation of a Stateflow model, which in turn is embedded in a Simulink model
file.

2.1.1 SIMONE

SIMONE(Alalfi et al, 2012a) is a model clone detector designed for detecting
near-miss submodel clones in Simulink models. SIMONE extends the code-
based clone detector NiCad (Cordy and Roy, 2011). NiCad is a text com-
parison software clone detection system with a plugin architecture that uses
TXL(Cordy, 2006). NiCad has been successfully used for finding cloned codes
in a range of languages, including C, Java, Python, C#, and WSDL(Martin
and Cordy, 2010). SIMONE extends the NiCad code clone detector engine to
analyze the internal textual representation of Simulink MDL files.

SIMONE extracts all potential clones at a specified level of granularity
from the Simulink MDL files as clone candidates. Then SIMONE normalizes
the clone candidates by filtering out some attributes such as layout, canoni-
cally sorting blocks, and renaming attribute values to eliminate any unwanted
differences to make the comparison process more precise and accurate. Last,
SIMONE compares the clone candidates line-by-line using the Longest Com-
mon Subsequence algorithm(Hirschberg, 1977). Then SIMONE computes a
percentage of unique items for each potential clone and use the number of
unique lines in each as a measure of similarity. If the percentage of unique
items in both line sequences of potential clones is below a given threshold, the
pair is considered to be clones.

6 Jian Chen et al.

Stateflow {
machine {
id 1
name "powerwindow"
...

}
chart {
id 2
name "control"
windowPosition [24 266 702 602]
viewLimits [0 843.043 2.915 444.795]
zoomFactor 1.282
screen [1 1 1280 1024 1.041666666666667]
treeNode [0 22 0 0]
...

}
state {
id 3
labelString "passengerneutral\nentry:\nmoveUp = 0;\nmoveDown = 0;"
position [724.059 27.423 98.524 90.095]
fontSize 12
...
treeNode [15 0 0 6]
...

}
...
junction {
id 23
...
linkNode [5 0 0]
...

}
transition {
id 24
labelString "after(100,ticks)"
src { ... }
dst { ... }
...
linkNode [5 0 25]
...
}

...
}

Fig. 4 Snippet of the Stateflow textual representation in the MATLAB power window demo
model

2.2 Stateflow TXL Grammar

In order to use the existing clone detection tool SIMONE, the first step is
to build a Stateflow TXL grammar allowing TXL to parse Stateflow models.
We derive a TXL grammar from a large set of Stateflow model examples
in the public domain by using iterative grammar techniques(Stevenson and
Cordy, 2012). Our grammar identifies all observed elements of the Stateflow
models, including machines, charts, states, transitions, junctions, events, data,
instances, targets and other elements.

Clone Detection in Matlab Stateflow Models 7

(a) Hydraulic Monitor

(b) Position Monitor

Fig. 5 Example of a type 1(exact) clone in a Stateflow model. Both (a) and (b) in the
sf aircraft screen library model and they contain the same number of states and transitions.
The two failure logging states can be considered as the cloned fragments.

(a) driverDown Substate

(b) driverUpn Substate

Fig. 6 Example of a type 2(renamed) clone in a Stateflow model. Both are in the power-
window model.

2.3 Clones in Stateflow Models

Software clones are segments of code that are similar according to some defi-
nition of similarity (Koschke, 2006). Model clones can be defined similarly as
the way of code clone is defined. Model clones are similar or identical frag-
ments in software models. However, this is a rather vague definition, because
the possible ways in which fragments can be identified in models. Generally
speaking, models are typically represented by graphs. Model clones are similar
subgraphs of these graphs(Alalfi et al, 2012a).

We adapt the definition of clones we used in Simulink clone detection(Alalfi
et al, 2012a) for Stateflow model clones. The graph elements(states, transitions
and junctions etc.) are the fragments of a Stateflow model. For our purposes,
clones in Stateflow are models that are structurally similar. For example, the
same structure states and transitions with different labels, conditions and ac-

8 Jian Chen et al.

Fig. 7 Example of a type 3(near-miss) clone in sf test vectors model.

tions are considered clones. Our research group has categorized the three model
clone types, and we tailored them here for Stateflow as follows:

– Type 1 (exact) model clones are identical model fragments, ignoring vari-
ations in visual presentation, layout, and formatting, Figure 5 shows an
example of type 1 clones where all Stateflow components are exactly the
same. In general, the location and layout of the Stateflow elements may
change and still remain a type 1 clone.

– Type 2 (renamed) model clones are structurally identical model fragments,
ignoring variations in labels, values, types, and the variations from Type
1. Figure 6 shows an example of Type 2 (renamed) model clone. The figure
shows two states from the MATLAB power window demo model. The two
states contain nested states, junctions an transitions that are identical in
structure, and in some cases, identical in labels. The differences are the
names of the states, the names of the substates and some of the labels.

– Type 3 (near-miss) model clones are model fragments with further mod-
ifications such as small additions or removals of model elements such as
charts, states, translations, junctions, events, data, instances, targets and
other elements, in addition to the variations from Type 1 and 2 clones. Fig-
ure 7 shows an example of Type 3 near miss model clone. These also rep-
resent complex substates of a state model, however in addition to changes
in labels, the second element of the clone class has fewer substates and
transitions than the first.

3 Approach

Figure 8 shows the three stages of our approach. The first stage transforms
the Stateflow textual representation into a hierarchical textual structure as the
initial input. The second stage, implemented as a plugin, normalizes the initial
input to remove irrelevant elements and rename irrelevant naming differences
to make the process of clone identification more accurate. The final stage
identifies potential clone candidates and clusters them into classes.

Clone Detection in Matlab Stateflow Models 9

Fig. 8 Steps of our approach

After Stateflow model clone identification, we also add a contextualiza-
tion step in order to improve the accuracy of Simulink model clone detection
by enabling the identification of model clones in Simulink models that have
Stateflow components embedded in them.

4 Representation Transformation

In the previous section, we gave an overview of the Stateflow model represen-
tation at the text level, all states, junctions, transitions and other elements are
sequentially stored in the Simulink model file. This linear text representation
of each object is the first challenge for Stateflow model clone detection. In this
section, we show how to transform the liner representation of the model into
a hierarchical version and separate the actions of a state to represent each as
separate attributes.

4.1 Structure Folding

We restructure the textual representation of Stateflow to explicitly show the
Stateflow hierarchy(The MathWorks Inc, 2014), which folds each object to its
parent object to form a nested textual presentation, called Folding. The pur-
pose of folding phase is to bring all the elements referenced by the attributes
into a self contained unit so that all related elements can be extracted as one
potential clone fragment by the extractor. This step is similar to (Martin and
Cordy, 2011) and (Antony et al, 2013). Martin et al. presented the technique
for extracting the elements of each operation in WSDL(Web service Descrip-
tion Language) and consolidating them into a self-contained unit. Antony et
al. applied this technique to the XMI text representation to reveal the hidden
hierarchical structure of the model and granularize behavioural interactions
into conversational units.

Figure 9 shows an example from the MATLAB demo set. The treeNode and
linkNode attributes are used to preserve the hierarchical structure of State-
flow models (Dominguez, 2012). These attributes contain references to other

10 Jian Chen et al.

Stateflow {
machine {
id 1
name "powerwindow"
...

chart {
id 2
name "control"
...
treeNode [0 22 0 0]
...

}
...
state {
id 4
labelString "emergencyDown\nentry:\nmoveUp = 0;\nmoveDown = 1;"
...
treeNode [2 0 22 0]
...

}
state {
id 15
labelString "driverNeutral\nentry:\nmoveUp = 0;\nmoveDown = 0;"
...
treeNode [22 3 0 14]
...

}
state {
id 22
labelString "safe"
...
treeNode [2 15 0 4]
...

}
...
junction {
id 23
...
linkNode [6 0 0]
...

}
...
transition {
id 29
labelString "[obstacle]"
...
src {
id 22
intersection [2 1 0 0.34 713.8395 156.0148 0 83.5443]

}
dst {
id 4
intersection [3 0 1 0.6093 762.5552 117.5173 0 -83.5437]

}
...
linkNode [2 59 0]
...

}
...
}

Fig. 9 Textual Representation of MATLAB powerwindow model chart (used in MATLAB
demo set)

Clone Detection in Matlab Stateflow Models 11

Stateflow elements and the treeNode element is used to represent the tree struc-
ture of components that can contain other components(i.e. charts and states),
while the linkNode attribute represents primitive elements such as transitions
and junctions. We create a transformation to fold each child object into its
parent object. The program folds the textual block of any Stateflow objects
such as substates, junctions and transitions and put them in the parent block.
The transformation takes a folding approach that examines each element in
turn and inserts it into the appropriate parent element. At the same time, the
nested elements are sorted by type: first states, then transitions, and finally
junctions.

Stateflow {
machine {

id 1
name "powerwindow"

...
chart {

id 2
name "control"
...

state {
id 4
labelString "emergencyDown\nentry:\nmoveUp = 0;\nmoveDown = 1;"

}
state {

id 22
labelString "safe"
...
state {

id 13
labelString "driverUp\nentry: moveUp = 1;\nexit: moveUp = 0;"
...

}
...
transition {

id 29
labelString "[obstacle]"
...
src {

id 22
intersection [2 1 0 0.34 713.8395 156.0148 0 83.5443]

}
dst {

id 4
intersection [3 0 1 0.6093 762.5552 117.5173 0 - 83.5437]

}
...

}
...
}

Fig. 10 Folding textual presentation result of powerwindow model

Figure 10 shows a simplified version of the new representation. In the figure,
every Stateflow object has been folded into its parent object properly, it clearly
shows the nested structure.

12 Jian Chen et al.

4.2 Label Splitting

The labelString is an important attribute for states and transitions. Some of
Stateflow properties such as state names, actions and transition conditions
are encoded as a single string of labelString attribute. The labelString in a
state has a general format shown in Listing 1. The first line is the name of a
state, and the following lines are a set of actions after each keywords: entry,
during and exit. These actions are executed at the different phase of a state,
i.e.,entry actions are at the activation of a state; during actions are at the
simulation phase; and the exit actions are executed when a state is going to
be deactivated.

Listing 1 State labels general format

name
entry: entry actions
during: during actions
exit: exit actionsn envent_name: on event_name actions
bind: events

The labelString of transition has different syntax and semantics. Listing
2 shows a general format of transition label. Transition labels contain event
triggers, conditions, condition actions and transition actions.

Listing 2 Transition labels general format

event[condition]{condition_action}/transition_action

Our model clone detection tool is based on comparing line as a whole. So
a difference in a single part of a state or transition label renders the entire line
different. We separate the single lableString into multiple lines to improve the
precision of our model clone detection. We introduce new attributes and split
the state labels into several new attributes and its own value. The state name,
if present, is encoded using a new textlabel attribute. The entry, during and
exit actions, when present, are encoded using separate attributes of similar
names (entrylabel, duringlabel, and exitlabel).

Transition label has different components with the state labels, so we in-
troduce four new attributes to the textual presentation. We separate each of
the components of the transition labels into separate attributes. These compo-
nents are identified by the new attributes eventlabel, conditionlabel, condition
action, and actionlabel. This provides us with finer grained control over the
comparisons used for clone detection. For example we can distinguish between
a change in an event label from a change to both an event label and the code
given by the action of the transition.

5 Extraction And Normalization

Generally, clone detection tools are hunting for fragments of codes or models
to compare as clone candidates, which are extracted from their representation.
To extract Stateflow model fragments, we add a new extractor to SIMONE.

Clone Detection in Matlab Stateflow Models 13

After the extraction, the extracted fragments can be normalized to improve the
precision and recall of the clone detection phase. In this section, we discuss the
transformations that provide the initial results of our model clone detection.

5.1 Extraction

Identifying and extracting the potential clones is the first stage of clone de-
tection. We could use the entire Stateflow section of the file, but that would
not provide comparison of fragments at the state level. Two similar states
might be ignored, and only the highest level state machines are compared. To
achieve a finer level of comparison fragment, we need to define the granularity
for Stateflow.

5.1.1 Granularity

We provide two granularities of clone candidates for Stateflow. The first, chart
granularity extracts all of the Stateflow charts as clone candidates. Charts in
Stateflow represent entire machines. A Simulink model may have more than
one chart, each of which may be instantiated multiple times as blocks in the
Simulink Model. The second level of granularity, state granularity, extracts all
states in all charts as clone candidates. This allows us to identify cloned state
machines that are nested within states.

5.2 Normalization

In this phase, three new transforms are implemented in TXL for both states
and charts to normalize the result of the model files from the previous extrac-
tion step. The three transforms are filtering, renaming and sorting.

5.2.1 Filtering

Listing 3 shows an example of the extracted textual representation for State-
flow with all elements in chart, state, transition and junction. There exist a
number of elements (windowPosition, viewLimits, position, fontSize) related
to layout and formatting, which have no meaning from the model cloning point
of view. Even a small change in an element such as font or position can make
identical model fragments look very different when compared in the textual
representation level and prevent SIMONE from finding them as clones. In or-
der to avoid irrelevant differences overwhelming the similarities in fragments
of models, we designed a filtering plugin to identify and remove irrelevant ele-
ments from extracted fragment potential clones. Due to the lack of definitive
documentation for the text form of Stateflow model files, we gradually tune our
filters to remove irrelevant attributes as they are discovered. In the end, our
filtering transformation removes ten elements at the state level and seventeen
elements at the charts level to reduce the representation of model.

14 Jian Chen et al.

Listing 3 Example snippet of the extracted fragment used by Stateflow to store graphical
models.
chart {

id 2
name "control"
windowPosition [26.88 228.48 713.28 391.68]
viewLimits [0 843.043 2.915 444.795]
zoomFactor 1.282
screen [1 1 1024 768 1.041666666666667]
treeNode [0 22 0 0]
firstTransition 28
viewObj 2
machine 1
ssIdHighWaterMark 64
decomposition CLUSTER_CHART
firstEvent 60
firstData 61
chartFileNumber 1
executeAtInitialization 1
supportVariableSizing 0
state {

id 4
labelString "emergencyDown\nentry:\nmoveUp = 0;\nmoveDown = 1;"
entrylabel "entry:"
entrylabel "moveUp = 0;"
entrylabel "moveDown = 1;"
textlabel "emergencyDown"
position [724.059 27.423 98.524 90.095]
fontSize 12
chart 2
treeNode [2 0 22 0]
subviewer 2
ssIdNumber 2
type OR_STATE
decomposition CLUSTER_STATE

}
...
transition {

id 48
labelString "after(100,ticks)"
eventlabel "after(100,ticks)"
labelPosition [621.046 350.571 71.297 14.763]
fontSize 12
src {

id 19
intersection [3 0 1 0.547 623.5507 348.601 0 0]

}
dst {

id 26
intersection [0 0.5304 - 0.8477 - 1 580.8606 367.8496 0 0]

}
midPoint [605.6555 356.8862]
chart 2
linkNode [13 0 49]
dataLimits [580.861 623.551 348.601 367.85]
stampAngle - 0.294
subviewer 2
slide {

sticky BOTH_STICK
arcL -29.0042

}
executionOrder 1
ssIdNumber 42

}
...
junction {

id 26
position [577.1478 373.7835 7]
chart 2
linkNode [13 0 0]
subviewer 2
ssIdNumber 57
type CONNECTIVE_JUNCTION

}
...

}

Clone Detection in Matlab Stateflow Models 15

Total states(1499) &
charts(339)

Extractor Filtered Filtered Filtered, Sorted
Only Only & Renamed & Renamed

state chart state chart state chart state chart
Clone pairs 205 514 151 275 281 728 271 676
Clone class 24 27 20 23 44 27 43 30

Table 1 Initial results of the Stateflow model clones found in the Matlab demo set.

5.2.2 Renaming

Filtering improves the similarity of the clones, but SIMONE was not able to
find all exact and near-miss state clones in the example model set. In order to
identify the missing model clones, we must also remove naming differences.

We use a fixed value “x” to rename all attributes that represent internal
information, and they are not relevant to clone comparison. Agile parsing is
used during the parsing phase to grammatically distinguish the attributes that
need to be renamed from those that should not be renamed.

5.2.3 Sorting

While renaming improves clone detection, we found that the order of objects
in two identical models may be different from each other. SIMONE compares
potential clones line by line. Thus the order of graphical objects in textual
representation of a model does not change its graphical meaning but it will
affect the identification of clones. We developed a sorting plugin, which sorts
the states by the number of nested elements.

6 Experiment

We have conducted two main experiments using our new stateflow analysis
approach and tool, the first experiment evaluates our tool on all of the pub-
licly available Simulink models, including all of Matlab Central, and all of
the demonstration systems distributed with Simulink. There are a total of
269 model files that contain Stateflow in the demo set5. Our initial, baseline
experiment uses only the candidates extracted at both levels of granularities
without any normalization. Using a threshold of 30% difference(i.e. at least
70% of the lines are the same) and a minimal clone size of 100 lines, we were
able to extract 1499 states and 339 charts and find several clones in the demo
set. A clone class is the equivalence class induced by the clone pair relation-
ship. If a and b are clone pairs, and b and c are clone pairs, then a, b and
c form a clone class. Table 1, the Extractor only column, shows the initial
results. We found 205 state clone pairs clustered in 24 clone classes, and 514
chart clone pairs clustered in 27 clone classes.

5 They come with Matlab installation located at the Matlab installation directory.

16 Jian Chen et al.

(a) ClimateControlSystem/Temperature Control Chart

(b) Temperature Control Chart

Fig. 11 Example of Stateflow clones from sldemo auto climate elec.mdl and
sldemo auto climatecontrol.mdl in Matlab demo automotive models

Examination of the results revealed models that are identical in the graph-
ical view do not have one hundred percent similarity. At the same time, we
also found some states having identical graphical representation do not show
up in the clone detection result. If we adjust the threshold a little higher, some
missing states will be found in the clone detection report. Thus a normaliza-
tion step is required to improve the precision. The most obvious differences
were differences in layout attributes, and normalizing these attributes could
improve clone detection. Thus, we repeated the experiment after adding the
filtering module, and after adding the sorting filtering modules. After verifying

Clone Detection in Matlab Stateflow Models 17

Fig. 12 A Type 2(renamed model clone), this example is in the powerwindow model. The
four red states are similar to each other. SIMONE similarity 76%

the results by hand, we found that the normalization of the states and charts
are necessary to improve Stateflow clone detection precision.

Table 1 shows the total number of clone pairs and classes detected by
each of the normalization options described in 5.2 . Filtering reduced the total
number of clones by removing the false positives generated by similarities only
in unimportant attributes. Renaming increased the number of clones detected
by allowing different names to match. Sorting improved the quality resulting
in slightly fewer clone pairs, but a few more clone classes.

The similarity of some of the clone pairs identified by using only the ex-
tractor is increased when using the filtering module. However, the filters do
not identify more clone pairs and clone classes. The filtering can improve
some similarity but not significantly. Figure 11 shows an example at chart
level from two different Stateflow demo models, sldemo auto climatecontrol
and sldemo auto climate elec, which include the identical Temperature Con-
trol Chart.

Renaming significantly improved recall in finding exact and near-miss exact
state and chart clones in the Stateflow demo models. Table 1, the Filtered &
Renamed column, shows the result of renaming. We found 281 state clone
pairs clustered in 44 clone classes, and 728 chart clone pairs clustered in 27
clone classes. New type 2 and type 3 clones were identified and the following
examples are some of these cases.

Figure 12 shows an example type 2 clone of four different states in one
chart in the powerwindow model of the Simulink example set. As you can
see from the figure, the structure of each state is exactly the same, but the
names and labels have been changed, replacing the string “passengerDown”
with the string “passengerUp”, “driverDown” and “driverUp”. Figure 13 shows
another type 3 clone between Bang-Bang Controller/heater state of sf boiler

18 Jian Chen et al.

(a) sf boiler/Bang-Bang Controller (b) sldemo boiler/Bang-Bang Con-
troller

Fig. 13 A Type 3(near-miss model clone), (a) in sf boiler model and (b) in sldemo boiler.
SIMONE similarity 81%.

model and Bang-Bang Controller/Heater state of sldemo boiler model of the
Staeflow demo set. The red circles shows the difference between the two states.

Our second experiment evaluates our tool on models obtained from our
industrial partner. These models are grouped into 9 sets called rings. The
model set has 10 versions with a total of 426 models that include stateflow
charts. Eleven of these model files are testing libraries. We were unable to parse
6 of the files. This left 409 model files, which contain 10655 charts and 22904
states in total. There are 276 lines in a chart on average, and and average of
13 lines in a state. We found that the states in this sample of models do not
contain nested states. Thus we only conducted our analysis on the chart level
of granularity.

Our evaluation is done in two ways. The first is to run clone detection
on each of the 10 versions separately across all of the rings (i.e. the same
version of the model files in each ring). The other was to examine run clone
detection on all versions of each ring separately. The presence of clones across
versions of a particular ring are not surprising as the same chart is present
in each of the versions. What is more interesting is that there are 10 classes
of clones in each version that are used in multiple rings. Some of these are
very simple charts, while others are a bit more complex. Once filtered the
10 classes drop to 6 classes of clones, which remains consistent even after
renaming and sorting. The main reason is that many of these charts were very
similar, so the renaming and sorting did not remove any differences that were
not already above the threshold. In the cases that we observed, the names of
the states were identical, as were the structure of the states and transitions.
The only differences between these charts were the events and actions on
the transitions. Discussions with our industrial partner indicates that they
use Stateflow in these cases for simple tasks and reuse proven solutions from
one system in another. These classes appear to be a good basis for a set of
automotive specific patterns in Stateflow.

Clone Detection in Matlab Stateflow Models 19

Versions # Models Charts States
Ver1 54 1409 3024
Ver2 22 575 1232
Ver3 54 1409 3024
Ver4 37 964 2072
Ver5 54 1409 3024
Ver6 21 547 1176
Ver7 48 1248 2688
Ver8 54 1404 3024
Ver9 15 234 504
Ver10 56 1456 3136

Table 2 The statistical information on the GM set by version.

Rings # Models Charts States
Ring1 42 1105 2352
Ring2 33 866 1848
Ring3 56 1456 3136
Ring4 40 1040 2240
Ring5 21 546 1176
Ring6 21 546 1176
Ring7 90 2184 4704
Ring8 56 1456 3136
Ring9 56 1456 3136

Table 3 The statistical information on the GM set by ring.

As a parser-based technique, precision is not an issue for the NICAD en-
gine (Roy and Cordy, Mutation 2009), and the real issue is recall, which we
have addressed in the paper. Even so, precision was validated for *all* our test
results by comparing to the original models by hand. Our tests included sys-
tems with models of over 100,000 source lines, which are parsed and processed
in under a minute, and we continue to test larger scalability.

20 Jian Chen et al.

Extractor Filtered Filtered Filtered, Sorted
Only Only & Renamed & Renamed

pairs classes cputime(min) pairs classes pairs classes pairs classes
Ver1 483250 10 16.75 585310 6 710859 6 710859 6
Ver2 80018 10 0.66 96958 6 117833 5 117833 5
Ver3 483250 10 15.99 585310 6 710859 6 710859 6
Ver4 226703 10 4.48 274618 6 333555 5 333555 5
Ver5 483250 10 19.95 585311 7 710858 7 710858 7
Ver6 72933 9 0.57 88368 5 107352 5 107352 5
Ver7 381748 10 12.2 462388 6 561552 5 561552 5
Ver8 483250 10 18.75 585310 5 710802 5 710802 5
Ver9 13329 9 0.07 16164 5 19647 5 19647 5
Ver10 519740 10 26.71 629500 6 764456 5 764456 5
Ring1 292294 12 8.85 354034 8 430111 6 430111 6
Ring2 180349 13 2.88 218464 9 265295 8 265295 8
Ring3 519848 9 26.42 764456 5 764456 5 764456 5
Ring4 265080 9 6.91 321080 5 389880 5 389880 5
Ring5 72933 9 0.57 88368 5 107331 5 107331 5
Ring6 72933 9 0.57 88368 5 107331 5 107331 5
Ring7 1169116 10 29.47 1416076 6 1720572 5 1720572 5
Ring8 519848 9 24.07 629608 5 764456 5 764456 5
Ring9 519848 9 32.23 629608 5 764456 5 764456 5

Table 4 Initial results of the Stateflow model clones found at chart level in the GM set.

Fig. 14 Steps of contextualization

7 Contextualization

In the previous sections, we discussed how we extended SIMONE to detect
clones in Stateflow models. However, clones in Simulink models and Stateflow
models are detected separately when we apply SIMONE to the Simulink mod-
els. Since the Simulink blocks that link to the Stateflow models do so with a
single attribute, similarity of the referenced Stateflow models is ignored when
computing Simulink clones.

In this section we discuss how we can use the results of the Stateflow clone
detection to improve the accuracy of the Simulink clones. We call this process
contextualization, a process of putting the Stateflow model in the context of
the Simulink model, for the purpose of improving the accuracy of SIMONE.
Figure 14 shows the steps of contextualization. The first stage embed the
extracted states into its parents Simulink to form the contextualized model

Clone Detection in Matlab Stateflow Models 21

Total systems(1388) System Only Full lines One line Weighted lines
Clone pairs 4100 4902 4182 5058

Clone classes 24 42 25 32

Table 5 Initial results of the contextualization Stateflow model clones found in the Matlab
demo set.

files as SIMONE’s initial input. The second stage uses SIMONE to identify
potential clone candidates and clusters them into classes.

The link between the Simulink and Stateflow models is encoded in two
attributes. There is a chartFileNumber attribute in each separate Stateflow
model in the file that acts as an identifier. The second attribute is the Tag
attribute that is present in each of the blocks that represent Stateflow models
in the Simulink model. This is a one to many relationship that allows a single
Stateflow chart to be used in multiple places in a Simluink model. The format
of the Tag attribute starts with the characters “Stateflow S-Function”, a model
file name, and the index number.

We insert each chart into its parent block by the referencing number. The
contextualization is similar to the work done by Grant et al. (S. Grant and
Skillicorn, 2011) in identifying contextual clones in WSDL documents. We
investigate three different ways in which we can contextualize the models: full
lines, one line, and weighted lines.

7.1 Contextualization via full lines

Full lines means we put the entire state machine back into its parent Simulink
block. The chart text we used for full lines is the chart textual representation
after normalization (folding, line splitting, renaming, etc.). Listing 4 shows the
snippet of the contextualized textual representation of the MATLAB power
window demo. The System block has an “S-Function” block which contains
the control chart.

In our experiment, we picked only models that contained both Stateflow
and chart blocks that we could examine for the contextualization. The nor-
malization plugins of SIMONE conformed with Stateflow, so we used filtering,
blind renaming, and sorting plugins, and a threshold of 30% at the system level
of granularity. We were expecting a more accurate result when using SIMONE
on the combined models using the above parameter settings. Column two in
table 5 shows the result of the full lines experiment. SIMONE can detect more
clone pairs and clone classes after the contextualization.

When examining the results, we can ignore all the system without chart
clones as they remain the same as before, and focus on those system clones
containing charts. Changes in results can be classified into three categories:

1. System clones were still clones.
2. System clones were missing.
3. New System clones appeared.

22 Jian Chen et al.

Listing 4 Example snippet of the contextualized fragment of
”power window control system” system in powerwindowlibsa.mdl.
System {

Name "power_window_control_system"
...
Block {

BlockType SubSystem
Name "control"
...
System {

Name "control"
...
Block {

BlockType S-Function
Name " SFunction "
SID "45::15"
Tag "Stateflow S-Function powerwindowlibsa 1"

chart {
chartFileNumber 1
...
data {

...
}
...
event {

...
}
state {

...
id "x"
...

}
transition {

...
}
...

}
Block {

BlockType Terminator
Name " Terminator "

}
...

}
}
...

}

SIMONE is a line-based clone detector, so the number of lines of a chart
embedded in a system potential clone candidate affects the result of the contex-
tualized clone detection. If the number of lines in embedded Stateflow models
overwhelms the number of lines in the original Simulink host system, then the
charts’ similarity will dominate the clone detection result. In our test set, the
average number of lines in a system is 216 and the average number of lines in
a chart is 342. We can see the effect from the following three categories.

Category one

System clones had the same or similar charts in the cloned Simulink models.
In our test set, there were several versions of the “powerwindow” model with

Clone Detection in Matlab Stateflow Models 23

Systems
System Only Full Lines One Line Weighted Lines

pairs classes pairs classes pairs classes pairs classes
Ver1 16159 103188 71 749996 83 103188 71 103189 72
Ver2 6456 16622 40 124181 51 16622 40 16622 40
Ver3 16138 103189 71 749997 83 103189 71 103190 72
Ver4 11169 49244 46 352969 57 49244 46 49244 46
Ver5 16124 103258 70 750065 81 103258 70 103258 70
Ver6 6119 15218 37 113175 48 15218 37 15218 37
Ver7 14389 81952 59 593014 70 81952 59 81952 59
Ver8 16320 104963 64 751578 75 104963 64 104963 64
Ver9 2788 2916 23 20943 32 2916 23 2916 23
Ver10 16899 112967 61 808339 72 112967 61 112967 61
Ring1 11232 57763 74 449570 85 57763 74 57763 74
Ring2 9382 39220 43 280747 52 39220 43 39220 43
Ring3 16983 114345 64 809501 73 114345 64 114345 64
Ring4 12591 58166 69 412946 78 58166 69 58166 69
Ring5 6420 16001 37 113882 46 16001 37 16001 37
Ring6 6438 16027 38 113908 47 16027 38 16027 38
Ring7 25532 256632 71 1822510 82 256632 71 256632 71
Ring8 16880 113402 78 808558 87 113402 78 113402 78
Ring9 17103 113146 65 808302 74 113146 65 113146 65

Table 6 Initial results of the contextualization Stateflow model clones found in the GM
set.

a similar system “power window control system” and all of them contained an
identical chart “control”. SIMONE can identify the “power window control system”
system clones both before and after contextualization as the identical chart.

Category two

System clones contained different charts and the size of the chart overwhelmed
the hosting Simulink subsystem. For example, SIMONE reported that sys-
tem “fp verify current/detect obstacle” in powerwindowlibsa.mdl, and system
“Mixing & Combustion” in sldemo fuelsys.mdl are cloned at 82% similarity.
The size of both systems is 162 lines; the size of the “delay detection” chart is
175 lines and the size of the “EGO Sensor” chart is 89. Obviously, the result of
Simulink clone detection depends on the similarity of charts which dominate
the similarity of the Simulink model.

Category three

Category three was the detection of the new cloned pair. Original non-cloned
Simulink models contained the same or similar charts, and the size of the chart
was big enough to lead to the clone detection result. Two demo systems were
repored based on a comparison of 1214 lines, and the chart took about 810
lines. So the similarity of the chart contributed to this clone detection result.

24 Jian Chen et al.

7.2 Contextualization via one line

The problem with the full line contextualization is that the size of the em-
bedded Stateflow models overwhelmed the size of the host Simulink graph. In
the one line contextualization we put a single reference line of Stateflow to its
parent. First we perform a Stateflow clone analysis, in which SIMONE reports
clone classes by clustering similar charts into groups and assigning a unique
id. We invent a new Simulink attribute, classid which we insert into the host
Simulink model, the value of which is the clone class id from the Stateflow
clone analysis. Those Stateflow charts that did not belong to a clone class (i.e.
not similar to any other Stateflow chart) are assigned unique class ids distinct
from the detected clone classes. Listing 5 is an embedded one line version of
the previous example. Column three in table 5 shows the result of the one line
experiment.

Listing 5 Example snippet of the one line contextualized fragment of “power window
control system” system in powerwindowlibsa.mdl.

System {
Name "power_window_control_system"
...
Block {

BlockType SubSystem
Name "control"
...
System {

Name "control"
...
Block {

...
Tag "Stateflow S-Function powerwindowlibsa 1"
classid 2

}
...

}
}
...

}

The one line contextualization clone detection result still falls in the same
three categories. The clone pairs in category one, system clones were still
cones, take the majority of the result. There are 4038 clone pairs belonging
to category one in 4100 total clone pairs and most of them have the same
similarity percentage as before, some of them are within ±1% range. Sixty
two systems were 71% similar before contextualization and the single line
contextualization took them below the threshold. Several other clone pairs
were created when the extra lines pushed the similarity just over the threshold.
So the one line changes have a small effect on the contextualization.

7.3 Contextualization via weighted lines

Weighted lines means putting an average weight of a Stateflow clone back to
its parent. Full line (i.e., entire chart) is aggressive and one line is marginal.
Thus, we did another experiment that gives each chart a weight by inserting

Clone Detection in Matlab Stateflow Models 25

the classic attribute multiple times into the Simulink block. Based on our
group experience, the average lines of a block are about ten lines, so we give
each chart a weight of ten lines. Listing 6 is an embedded weighted lines ver-
sion of the previous example. Column three in table 5 shows the result of the
weighted lines experiment.

The result of weighted lines is similar to the previous one line experiment.

Listing 6 Example snippet of the weighted lines contextualized fragment of “power
window control system” system in powerwindowlibsa.mdl.
System {

Name "power_window_control_system"
...
Block {

BlockType SubSystem
Name "control"
...
System {

Name "control"
...
Block {

...
Tag "Stateflow S-Function powerwindowlibsa 1"

classid 2
classid 2
classid 2
classid 2
classid 2
classid 2
classid 2
classid 2
classid 2
classid 2
...

}
...

}
}
...

}

There are 3603 clone pairs belonging to category one and still taking the ma-
jority part of the result. The variation in the level of similarity is ranging from
-4% to +7%, and most of the changes are within ±2%. Some small size clones
like 126 lines clones can get 7% change, and some larger clones do not change
at all. There are 497 clone pairs in category two. The similarity is ranging
from 71% to 89% with most of them having 71%,72% and 73% similarity.

7.4 Contextualization discussion

From the above experiments, we can see each approach has its own merits.
Contextualization via Full lines can obtain the best result of the combination

26 Jian Chen et al.

clone detection, if the goal of the model clone detection is to identify the dupli-
cation of Simulink models that contain identical or similar Stateflow models.
The comparison of clone detection will take into account every line of both
Simulink and Stateflow models in the full lines approach; and we can examine
model clones from a larger perspective. If the goal of model clone detection
is more focus on the Simulink models, then the contextualization via one line
approach would be better. In this approach, the Stateflow model is just rep-
resented as one single line in its parent Simulink model, so it will not affect
the comparison of Simulink too much. Meanwhile, we still have the Stateflow
information inside the Simulink model. Contextualization via weighted lines
presents a more flexible way to detect the duplication of combining two type
of models. It can avoid the Stateflow model overwhelm the Simulink model
and also remain enough Stateflow model information during the comparison.

8 Related work

While code clone detection has been extensively researched (Roy et al, 2009),
research on model clones identification has received less attention (Deissenboeck
et al, 2010). Thus far, a few researchers have tried to find the clones in UML
behavioural models and Matlab/Simulink models.

Liu et al. (Liu et al, 2006) proposed a suffix-tree based algorithm to identify
duplications in UML sequence diagrams. They converted the 2-dimensional
sequence diagram to a 1-dimensional array and constructed a suffix tree from
the 1-dimensional array. Their approach identified the common prefixes in
the suffix tree and ensured that the duplications detected are extractable and
reusable sequence diagram as refactoring candidates.

Antony et al.(Antony et al, 2013) proposed an approach for identifying
near-miss interaction clones in reverse-engineered UML behavioural models.
They used a text-based technique and worked on the level of XMI. Their
approach transformed the XMI sequence diagram serialization into a contex-
tualized form and extracted the sefl-contained units of behavioural interaction
as clone candidates. A standard code clone detector is applied to identify
cloned behavioural interactions from the large set of contextualized textual
representation.

Störrle (Störrle, 2013) proposed an approach to identify clones in UML
models, specifically class, activity, and use case diagrams. The approach is
based on model matching and model querying(Störrle, 2009). He implemented
the MQlone tool to evaluate this algorithm. The tool transforms XMI files, that
are generated from UML domain models by using a contemporary UML case
tools as input, into Prolog files. Using model matching technique to generate
the output from the input model in the query. Störrle uses a different definition
of model clones. His definition requires that the structure of the models are
the same and that the labels on each of the model elements are similar. Thus,
his approach identifies Type 1 and Type 2 clones, but not Type 3 near-miss

Clone Detection in Matlab Stateflow Models 27

clones. He also claims the approach is extendable to Simulink and Stateflow
models. However, the approach has not been demonstrated on StateFlow.

The majority of mode clone detection approaches have been tailored for
Simulink models(Deissenboeck et al, 2010; Alalfi et al, 2012a; Deissenboeck
et al, 2008; Alalfi et al, 2012b; Stephan et al, 2012; Pham et al, 2009), and
these techniques either use graph based comparison or text-based techniques
to do clone detection on Simulink models. None of them has been applied to
Stateflow models.

Deissenboeck et al.(Deissenboeck et al, 2008) present one of the first meth-
ods to detect the duplication in Simulink models especially in automotive
domain. The approach is based on graph theory and can detect model clones
in Simulink and other graph based data-flow models. In their approach, mod-
els are presented as a flattened multigraph where each block and linear con-
nections are normalized by assigning a value. The duplications are checked
by performing a depth first search to find matching paragraphs. They im-
plemented their algorithm as a part of the quality analysis framework Con-
QAT(Deissenboeck et al, 2005) which is publicly available as open source soft-
ware6. Juergens et al.(Juergens et al, 2009) adapted this algorithm to form a
clone detection tool chain CloneDetective, which is designed as an open source
”workbench for clone detection research” and based on the open source tool
ConQAT.

Pham et al.(Pham et al, 2009) proposed an other graph-based clone detec-
tion tool for Matlab/Simulink models called ModelCD, which consists of two
algorithms, eScan and aScan. In their approach, the model were represented
as a parsed, labelled directed graph and larger clones were identified by adding
edges to smaller, already detected clones. The eScan algorithm was designed
to detect exact clones achieved by an advanced canonical labelling technique,
and the aScan algorithm was designed to exact and approximate clones by
computing a vector-based approximation of the structure with a subgraph.

Al-Batran et al.(Al-Batran et al, 2011) noted that these approaches only
consider syntactic clones, so they extended these approaches to cover semantic
clones that may have similar behaviour but different structure by using the
pattern-based normal-form approach, which normalized model graphs using
the models semantic information.

Hummel et al.(Hummel et al, 2011) present an index-based algorithm for
model clone detection that is incremental and distributable. In their approach,
a Simulink/Matlab model was represented as a directed multigraph and the
normalization assigned labels to relevant edges and blocks. The canonical la-
bel were computed for each subgraph in a clone index, which is a list of all
subgraphs having the same size. The clone retrieval process merged clone pairs
with same size.

6 http://www.conqat.org

28 Jian Chen et al.

9 Conclusions and Future Work

SIMONE has been successfully used in finding near miss subsystem clones
in Simulink models (Alalfi et al, 2012a). It adapted a text based code clone
detector NiCad to enable the identification of graphical model clones. In this
work, we present an extension for SIMONE to perform clone detection in
Stateflow models. We define two levels of granularity charts and states in
SIMONE to identify model clones for Stateflow models. Charts in Stateflow
represents entire state machines. States can contain other Stateflow objects to
form a multilevel complex state in a hierarchical structure. State granularity
extracts the states from the Stateflow model files as clone candidates. The
extension was evaluated against those MATLAB example models that contain
Stateflow models.

Besides identifying Stateflow model clones, we also investigate explicating
the state machines into the parent Simulink model, using the similarity of
state machines to improve the accuracy of Simulink clones. We import all the
state charts referenced by the Simulink blocks into the self-contained unit in
the textual representation level by using three different ways full lines, one
line, and weighted lines. We have packaged up the Stateflow clone detector in
SIMONE and made it available for download, and we are currently working
on packaging the explication of Stateflow clone results into the main version
of SIMONE as well.

The capabilities of SIMONE could be further improved in several research
directions. The initial clone detection results from the Matlab example set are
similar machines with variations in labels(i.e. state and transition names) and
other attributes such as position. We still need to evaluate our approach on
more Stateflow models, as well as to refine our SIMONE plugin to improve
clone detections. We also found some clone classes that appear to be embedded
Matlab code for use by state and transition labels. Improving our approach to
better deal with embedded code is also a line of future research. We also can
address our model clone issues further to turn the model clones into model
patterns, so that we can better assist and understand model reuse in model
development environment.

References

Al-Batran B, Schätz B, Hummel B (2011) Semantic clone detection for model-
based development of embedded systems. In: Proceedings of the 14th In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems, Springer-Verlag, Berlin, Heidelberg, MODELS’11, pp 258–272, URL
http://dl.acm.org/citation.cfm?id=2050655.2050681

Alalfi M, Cordy J, Dean T, Stephan M, Stevenson A (2012a) Models are code
too: Near-miss clone detection for Simulink models. In: ICSM, pp 295–304

Alalfi M, Cordy J, Dean T, Stephan M, Stevenson A (2012b) Near-miss model
clone detection for Simulink models. In: IWSC, pp 78–79

Clone Detection in Matlab Stateflow Models 29

Antony E, Alalfi M, Cordy J (2013) An approach to clone detection in be-
havioural models. In: Reverse Engineering (WCRE), 2013 20th Working
Conference on, pp 472–476, DOI 10.1109/WCRE.2013.6671325

Chen J, Dean TR, Alalfi MH (2014) Clone detection in matlab stateflow mod-
els. In: Proceedings of the 8th International Workshop on Software Clones,
Elec. Comm. EASST, vol 63, p 13 pp.

Cordy JR (2006) The TXL source transformation language. Sci Comput Pro-
gram 61(3):190–210

Cordy JR (2013) Submodel pattern extraction for simulink models. In: Pro-
ceedings of the 17th International Software Product Line Conference, ACM,
New York, NY, USA, SPLC ’13, pp 7–10, DOI 10.1145/2491627.2492153,
URL http://doi.acm.org/10.1145/2491627.2492153

Cordy JR, Roy CK (2011) The NiCad clone detector. In: Proceedings of
the 2011 IEEE 19th International Conference on Program Comprehension,
IEEE Computer Society, Washington, DC, USA, ICPC ’11, pp 219–220,
DOI 10.1109/ICPC.2011.26, URL http://dx.doi.org/10.1109/ICPC.2011.26

Deissenboeck F, Pizka M, Seifert T (2005) Tool support for continuous quality
assessment. In: Software Technology and Engineering Practice, 2005. 13th
IEEE International Workshop on, pp 127–136, DOI 10.1109/STEP.2005.31

Deissenboeck F, Hummel B, Jürgens E, Schätz B, Wagner S,
Girard JF, Teuchert S (2008) Clone detection in automotive
model-based development. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering, ACM, New York, NY,
USA, ICSE ’08, pp 603–612, DOI 10.1145/1368088.1368172, URL
http://doi.acm.org/10.1145/1368088.1368172

Deissenboeck F, Hummel B, Juergens E, Pfaehler M, Schaetz B (2010) Model
clone detection in practice. In: IWSC, pp 57–64

Dominguez ALJ (2012) mdl2smv: A tool for translating au-
tomotive feature models in matlab’s stateflow to smv.
https://cs.uwaterloo.ca/ aljuarez/mdl2smv.html, accessed: 2014-11-06

Harel D (1987) Statecharts: A visual formalism for complex systems. Science
of Computer Programming 8(3):231–274

Hirschberg DS (1977) Algorithms for the longest common subsequence
problem. J ACM 24(4):664–675, DOI 10.1145/322033.322044, URL
http://doi.acm.org/10.1145/322033.322044

Hummel B, Juergens E, Steidl D (2011) Index-based model clone detection. In:
Proceedings of the 5th International Workshop on Software Clones, ACM,
New York, NY, USA, IWSC ’11, pp 21–27, DOI 10.1145/1985404.1985409,
URL http://doi.acm.org/10.1145/1985404.1985409

Juergens E, Deissenboeck F, Hummel B (2009) Clonedetective - a work-
bench for clone detection research. In: Proceedings of the 31st International
Conference on Software Engineering, IEEE Computer Society, Washington,
DC, USA, ICSE ’09, pp 603–606, DOI 10.1109/ICSE.2009.5070566, URL
http://dx.doi.org/10.1109/ICSE.2009.5070566

Koschke R (2006) Survey of Research on Software Clones. In: Dagstuhl Semi-
nars

30 Jian Chen et al.

Liu H, Ma Z, Zhang L, Shao W (2006) Detecting duplications in sequence
diagrams based on suffix trees. In: Software Engineering Conference, 2006.
APSEC 2006. 13th Asia Pacific, pp 269–276, DOI 10.1109/APSEC.2006.32

Martin D, Cordy JR (2010) Towards web services tagging by similarity de-
tection. In: Chignell M, Cordy J, Ng J, Yesha Y (eds) The Smart Internet,
Lecture Notes in Computer Science, vol 6400, Springer Berlin Heidelberg,
pp 216–233

Martin D, Cordy JR (2011) Analyzing web service similarity
using contextual clones. In: Proceedings of the 5th Interna-
tional Workshop on Software Clones, ACM, New York, NY,
USA, IWSC ’11, pp 41–46, DOI 10.1145/1985404.1985412, URL
http://doi.acm.org/10.1145/1985404.1985412

Pham N, Nguyen H, Nguyen T, Al-Kofahi J, Nguyen T (2009) Complete and
accurate clone detection in graph-based models. In: Software Engineering,
2009. ICSE 2009. IEEE 31st International Conference on, pp 276–286, DOI
10.1109/ICSE.2009.5070528

Roy CK, Cordy JR (2007) A survey on software clone detection research.
SCHOOL OF COMPUTING TR 2007-541, QUEEN’S UNIVERSITY 115

Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of
Computer Programming 74(7):470 – 495

S Grant JC D Martin, Skillicorn D (2011) Contextualized semantic analysis
of web services. In: WSE 2011, pp 33–42

Stephan M, Alafi M, Stevenson A, Cordy J (2012) Towards qualitative com-
parison of simulink model clone detection approaches. In: IWSC, pp 84–85

Stevenson A, Cordy JR (2012) Grammatical inference in software engineering:
an overview of the state of the art. In: Hedin (Eds.), Pre-proceedings of
the Fifth International Conference on Software Language Engineering (SLE
2012), Fakultät Informatik, Technische Universität, pp 206–225

Störrle H (2009) VMQL: A generic visual model query language. In: Visual
Languages and Human-Centric Computing, 2009. VL/HCC 2009. IEEE
Symposium on, pp 199–206, DOI 10.1109/VLHCC.2009.5295261

Störrle H (2013) Towards clone detection in uml domain models. Software and
Systems Modeling 12(2):307–329

The MathWorks Inc (2014) Stateflow Hierarchy of Objects.
http://www.mathworks.com/help/stateflow/ug/stateflow-hierarchy-of-
objects.html, [Online; accessed March-2014]

