
A Constraint-based Intrusion Detection System
MD Siam Hasan
Queen’s University
Kingston, Canada

hasan@cs.queensu.ca

Thomas Dean
Queen’s University
Kingston, Canada
trd@queensu.ca

Fahim T. Imam
Queen’s University
Kingston, Canada

imam@cs.queensu.ca

Francisco Garcia
Universidad Complutense de Madrid

Madrid, Spain
franci04@ucm.es

Sylvain P. Leblanc
Royal Military College of Canada

Kingston, Canada
sylvain.leblanc@rmc.ca

Mohammad Zulkernine
Queen’s University
Kingston, Canada

mzulker@cs.queensu.ca

ABSTRACT
The expressiveness of constraints has a potential to de�ne network
behavior and defend against complex network intrusions. This po-
tential can be an integral part of an Intrusion Detection System
(IDS) for defending networks against various attacks. The existing
approaches of constraint logic programming have limitations when
it comes to solving the network constraints in the presence of the
continuous, constantly changing stream of network data. In this
paper, we propose two variations of a tree-based constraint satis-
faction technique to evaluate network constraints on continuous
network data. A Domain Speci�c Language (DSL) is developed
so that the IDS users can specify di�erent intrusions related to
their networks. We also present a prototype implementation of
these techniques. We evaluate the performance and e�ectiveness
of our approach against the network tra�c data generated from an
experimental network.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; • Soft-
ware and its engineering → Constraint and logic languages; •
Networks → Formal speci�cations;

KEYWORDS
Intrusion Detection System, Constraint Satisfaction Problem, Do-
main Speci�c Language

ACM Reference format:
MD Siam Hasan, Thomas Dean, Fahim T. Imam, Francisco Garcia, Sylvain
P. Leblanc, and Mohammad Zulkernine. 2017. A Constraint-based Intrusion
Detection System. In Proceedings of ECBS ’17, Larnaca, Cyprus, August 31-
September 1, 2017, 10 pages.
https://doi.org/10.1145/3123779.3123812

ACM acknowledges that this contribution was co-authored by an a�liate of the
national government of Canada. As such, the Crown in Right of Canada retains an
equal interest in the copyright. Reprints must include clear attribution to ACM and the
author’s government agency a�liation. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
speci�c permission and/or a fee. Request permissions from permissions@acm.org.
ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4843-0/17/08. . . $15.00
https://doi.org/10.1145/3123779.3123812

1 INTRODUCTION
Developing an e�ective network-based IDS is a critical area of
research in network security. The basic approaches to developing
the network-based IDSs can be divided into two broad categories:
the signature-based IDS, and the anomaly-based IDS [7]. Popular
IDSs are capable of recognizing attacks with known signatures.
However, their success against the new, sophisticated attacks is less
certain. A complex attack can be executed through multiple packets,
exploiting the dependencies between the packets. In some cases,
these packets are spread non-consecutively across a large window
of network tra�c. However, that does not mean that the IDS users,
i.e., the network security specialists are not aware of these attacks.
The specialists in Special Weapons And Tactics (SWAT) network
security team [5], for instance, are actively involved in monitoring
and detecting intrusions based on any abnormal tra�c behaviour.
Detecting intrusions in that case is handled by human experts with
no automated IDS. These shortcomings suggest that we need a new
kind of IDS.

Conventional IDSs use imperative rules to detect the misuse of
a network. They often use a ring bu�er of predetermined size, and
if a rule applies to two packets that are far apart, the rules must
explicitly save, retrieve and delete packet data from a data store.
We have shown in our previous research [10] that constraints are
capable of expressing complex network vulnerabilities in private
networks such as those used in air tra�c control or industrial con-
trol systems. As contrasted with general public networks, these
networks are isolated and only use a small, limited number of net-
work protocols. The limited number of protocols allow us to use
network constraints to mathematically de�ne the normal behavior
of the network. To be more speci�c, conditions between multiple
packets can be speci�ed in a network constraint, which the con-
straint engine can evaluate by automatically matching packet data
as it is received, automating the management of the storage of
packet data. De�ning the well-formedness of a network tra�c as a
set of high-level attributes allows multiple intrusions to be covered
in a single constraint. This allows the network security analyst to
concentrate on the health of the network as opposed to identifying
speci�c vulnerabilities.

In this paper, we propose a new type of IDS which solves con-
straints to identify intrusions. It should be noted that the framework
was initially implemented in our previous research [10]. We present
the enhancement of our original framework and propose two tree-
based techniques for solving network constraints. The framework

ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus Siam et al.

is now capable of handling incoming packets and identify di�erent
patterns by relating their �eld values. In our initial framework, all
the constraints were hard-coded as we were only interested in deter-
mining their validity. In this research, a Domain Speci�c Language
(DSL) is designed so that the framework can generate solutions
from that language. However, we only show the direct mapping
between the DSL code and actual implementation of constraints.
Generating source code from the DSL is kept for future research.
The IDS is evaluated against the tra�c generated from an exper-
imental private network running the Data Distribution Services
(DDS). During the evaluation, the emphasis is given on several
issues such as the validity of the constraints, successful detection
of constraint failure, required time to generate errors, resource us-
age, and the reliability of the IDS. The �nal result also includes a
comparison between the two proposed tree-based techniques.

This IDS is expected to detect the intrusions de�ned by an IDS
user. For example, we construct a constraint which ensures the
legitimacy of two entities while they are communicating with each
other within a network. If the constraint fails, we can suspect that
one or both of the entities are potentially malicious hosts in that
network. The combination of several constraints similar to this
latter one makes our IDS powerful enough to monitor the overall
health of the whole network.

Paper Organization: The rest of the paper is organized as fol-
lows. Section 2 gives an overview of our framework emphasizing
the constraint engine. Section 3 provides the details behind the ne-
cessity of adopting a new constraint satisfaction technique. Section
4 describes the attributes of a constraint. Section 5 is about the life
cycle of a network constraint. We explain the two proposed tree-
based techniques (naive and optimized) in Section 6. The following
two sections demonstrate three examples of the DSL that we have
developed to express the network constraints along with the sam-
ple snippets of their implementation. The evaluation environment
and the �ndings are presented in Section 9. Section 10 reviews the
research related to this paper. Finally, the last section provides the
conclusion and states our future plans for this research.

2 THE IDS FRAMEWORK
Figure 1 shows the framework of our IDS. In this paper, we focus on
the development of the constraint engine that evaluates network
constraints for identifying intrusions. The other modules in the
framework help the engine to evaluate the network constraints.
The parser of the framework validates the incoming packets from
the network and passes those packets along with their contexts
(e.g., IP address, Port number) to the entry points of the constraint
engine. These entry points or callbacks will be generated automati-
cally from the protocol speci�cations (future work). For messages
of each protocol, we have separate entry point or callback function.
An IDS user speci�es the security concerns about a network as part
of the Protocol Specs module. This high-level description of the
constraints are converted into an intermediate, low-level constraint
details by the ontological process. The Generator generates the
actual constraint tree and the code to handle their life cycles based
on the constraint data from the entry points. Currently, all the con-
straint trees are manually hard-coded in the engine. The evaluator
checks the application speci�c environmental constraints. Using

the environmental constraints, we ensure that the static behavior
of elements in a DDS service (e.g, a publisher’s topic ID) are not
altered during the runtime of the IDS. The IDS that we have de-
veloped has two modes: checking and learning. In order to gather
the information about the network architecture and the con�gura-
tion settings, we run the IDS in a learning mode. In this mode, no
constraints are evaluated and the information required to evaluate
the environmental constraints is collected. Figure 1 shows the data
�ow between the Evaluator and the Environmental Information. In
the learning mode, the evaluator stores the environmental informa-
tion (red arrow) and uses the information in checking mode (black
arrow). Based on the packet information and the environmental
knowledge, the engine evaluates the hard-coded constraint trees.
In case of a constraint violation, the evaluator generates an alert.
We extend the speci�cation of a constraint to include the life cycle
and how the constraint binds to the network data.

3 CONSTRAINT SATISFACTION
In order to �nd a suitable constraint satisfaction technique, we focus
on di�erent kinds of search mechanisms in a Constraint Satisfaction
Problem (CSP). Two types of search mechanisms are currently avail-
able: complete and incomplete. The complete algorithm searches
the full solution space using backtracking. The incomplete algo-
rithm performs a partial search on the solution space and has good
results with Anti-Monotonicity (AM)1 constraints. The computa-
tional time and memory management of the latter algorithm are
appropriate for using constraints in a real-time environment. An-
other way to use the incomplete algorithm is the compact pre�x tree
structure which holds information about patterns. However, main-
taining a large decision tree containing a high volume of frequent
patterns requires managing a large amount of memory. We choose
the tree-based technique for checking constraints with dynamic
information. The IDS framework uses a model which has been
developed for checking multi-packet constraints. One signi�cant
part of this feature is to dynamically search packets in a network
tra�c. Finding patterns or violating constraints on a continuous
data stream is not a novel idea [23]. However, this technique has
never been tried to check network constraints.

A naive approach for building optimal trees is to grow a full
(accurate) tree and then employ an algorithm which is based on
dynamic programming to prune away suboptimal portions of a
tree until that constraint is satis�ed. This is a time-consuming
and memory ine�cient technique and is not feasible for checking
constraints based on dynamic information. Another drawback of
this approach is to constantly update the search tree with incoming
packet attributes.

An optimized version of the constraint tree is to create e�cient
propagators for all the constraints. The scope of a constraint on a
particular node may contain both CSP variables and meta-variables
of the children of that node. This type of tree is used to implement
those constraints that are expressed as logical combinations of other
constraints. The major challenge of applying this technique in a
network is handling repeated variables. For keeping a constraint
tree persistent, if a separate copy has to be created every single
time, then the memory management becomes infeasible. Constant

1This type of constraint fails when a subset of the condition is not satis�ed.

A Constraint-based Intrusion Detection System ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus

Figure 1: The Constraint-based IDS Framework.

updates of the same variables in di�erent locations of the tree
requires frequent memory operations. The solution to this problem
is to reduce the number of frequent patterns by merging nearest
constraints and to decrease the frequency of memory shu�ing.
When it comes to reducing the number of constraints, we can
apply a few propagation algorithms such as the Generalized Arc
Consistency (GAC) [19]. However, they are not e�ective to prune
away a subdomain where variables are repeating. In this situation,
constraints with polynomial-time GAC propagators turns into an
NP-hard problem to enforce the GAC, for example, the Global
Cardinality Constraint [16]. Besides these, no other optimization
algorithm has been proposed which addresses our problem.

From the network security point of view, a tree-based constraint
satisfaction technique can be compared with the state-based secu-
rity testing on packets [26]. However, in a state-based approach,
the scope of expressing multi-packet constraints is limited.

Apart from the dynamic rules [17] or events in existing IDS rule
engines, a few research contributions can be found demonstrating
the process of expressing vulnerabilities in consecutive packets.
None of them provides a pragmatic solution for the proposed net-
work constraints as they lack the ability to bind conditions between
multiple packets and do not possess the liveness property [2].

4 ATTRIBUTES OF A CONSTRAINT
Environmental (EV): This is part of a constraint which checks
information that is part of the deployment of an application. For
example, in an Air Tra�c Control (ATC) system, only the systems
that act as the interfaces to the radar hardware may introduce radar
data into the network system. Similarly, the �ight plan information
can only be originated from certain dedicated systems in the net-
work. While this information may be manually entered based on
the speci�c network architecture or from con�guration �les, the
information may also be inferred when checking the constraints
against a known, clean system.

Single Packet (SP): A single packet constraint can be com-
pared to detecting signatures in a single packet envelope. Mostly
this constraint satis�es hard rules set by the administrators. The
tree of this type is short-lived and does not require the liveliness
property [2].

Multi Packet (MP): A multiple packet constraint models the
dependencies which occur between multiple packets. The packets
are expected to arrive in a speci�c order. For example, when a
network �le needs to be modi�ed, �rst thing the Network File
System (NFS) does is to open the handle to that �le. After getting
a valid �le handle, the number of bytes requested can be written
to the �le. In the end, the handle is gracefully terminated by NFS.
During this full operation, a constraint can ensure that the �le
handle is kept open by the NFS. This type of constraint is used to
detect the complex attack patterns. Trees for this type of constraint
have a longer life, and are used to correlate data from packets that
may be separated by many unrelated packets.

Kept-Alive (KA): Other than the EV constraint which must be
kept for the run-time of the IDS, we need to de�ne the living time
of a constraint tree in order to manage the runtime environment
of the IDS. Without this attribute, it is impossible to manage the
memory operation, the run-time, and the space requirements of the
IDS.

Chained Sequence (CS): Some of the constraints can be co-
related and merged into a single one in order to improve the perfor-
mance of the IDS. If the precondition of one constraint is already
satis�ed by another constraint, then they can be considered as the
constraints with chained-sequence.

It should be noted that with the exception of the SP andMP, none
of the attributes are mutually exclusive. Most of the constraints are
multi-packet and kept-alive constraints.

5 LIFE CYCLE OF A CONSTRAINT
Finding patterns or pushing constraints in a continuous stream
is not a novel idea [23]. However, this technique has never been
tried to satisfy stand alone constraints. We adapt this approach by
instantiating the trees as the packets are evaluated. We identify
four steps in the life cycle of a network constraint.

Instantiate (I): Instantiate is the �rst step in the life cycle of a
constraint tree. This is used when the �rst packet in the sequence
or the only packet for a single packet constraint is encountered.
A copy of the constraint tree is created and the information from
the packet is added to the tree. The tree is then cached for two
reasons. First, it helps �nd immediate next step in a constraint to

ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus Siam et al.

�nd the instance of the tree. Second, a duplicate tree is identi�ed if
a network entity restarts a sequence.

Bind (B): A bind step is triggered by the arrival of each packet
in a multipacket sequence. The data relevant to a constraint is added
to the packet, accumulating the relevant data for later use. If the
constraint tree does not exist already, i.e., from the instantiate or
previous bind step, a violation is logged.

Evaluate (E): Once all of the data from the packets are collected
in the constraint tree, a constraint can be evaluated. A failure to
evaluate the constraint indicates that something abnormal has oc-
curred on the network. Similar to the bind step, the IDS generates
errors if the constraint tree cannot be found in this step.

Destroy (D): This is the �nal step of a constraint life cycle. Based
on the original constraint, we can determine that all the values
stored in a constraint tree are no longer needed, and the tree can
be removed from the cache. Destroying a constraint tree increases
memory e�ciency of the proposed techniques and reduces the look
up operations of existing constraint trees in the cache.

6 TWO TREE-BASED TECHNIQUES
We propose two tree-based techniques for solving the constraints.
In the naive technique, each constraint is represented as a constraint
tree structure encoded in an array. Array indexes are used instead
of pointers, allowing the tree to be entirely self-contained in the
array.

Figure 2 shows how the tree skeleton of constraint C5 looks
in both techniques. This tree has four non-leaf and six leaf nodes.
The naive technique needs to store the complete constraint tree
compared to the optimized technique storing only four leaf nodes
from the instantiate and bind steps of the constraint tree.

The instantiate step involves creating a copy of the array to
which data is added from each packet that triggers a bind step.
The constraint tree is evaluated by a recursive depth �rst traver-
sal [11] of the tree. We compare the naive technique to an optimized
implementation. In this case, the code for the evaluation step is
generated automatically from a constraint speci�cation. While the
data may be dynamic, the constraints themselves are static. Instead
of managing a full constraint tree, only an array representing the
leaf nodes from the �rst two steps is allocated and cached in the
instantiate step. The code representing a constraint is generated
and used to evaluate the constraint using the data stored in the
array representing the leaf nodes.

7 THE DSL CODE OF CONSTRAINTS
Earlier we proposed an optimized technique to satisfy a network
constraint. However, we still do not show how the structure of a
constraint is hard-coded beforehand. The constraints developed by
us are descriptions of the intrusions in a private network running
DDS based on two protocols: the Internet Group Management Pro-
tocol (IGMP) [9] and the Real-Time Publisher Subscriber Protocol
(RTPS) [24]. These descriptions are made in natural language and
can not be transformed into a solution. We therefore needed an
intermediate DSL which can represent the constraints that can be
converted directly into an actual source code structure. Since the
optimized technique does not evaluate a constraint with a generic
algorithm, the language should possess the ability to represent the

life cycle of a constraint. During designing the DSL, we consider
the following:

• The packet data structures passed by the parser
• The callbacks generated by the parser to identify a packet
and message type

• The environmental data speci�c to a set of constraints.
The language we propose is a low-level speci�cation, which is

only used for an intermediate step for generating constraint tree
and is not built with the intention of user expressiveness. We do
consider the comprehensibility of this language. To explain the
language better, we chose three network constraints developed in
our previous work [10] and express them in our proposed DSL.

7.1 Valid Entities
The RTPS protocol [24] is a UDP protocol which is commonly used
to implement the DDS. A general data exchange involves publisher
and subscribers �rst sending an identi�cation message called a
participant message, followed by either a publisher or a subscriber
message which identi�es the topics that they either provide or re-
quire. The RTPS makes extensive use of multicasting in order to
reduce the network tra�c. Thus a publisher or a subscriber must
�rst join a multicast group before they can establish a communica-
tion. The constraint recognizes this behavior is

All the subscribers and publishers must be valid mem-
bers of at least the IGMPmulticast group. These participants
must send their membership reports to the group addresses
(to join) before publishing or subscribing to in a topic - C5.

The DDS participants (publishers and subscribers) must �rst
announce to the network that they are participants to a multicast
address. In order to receive similar messages, the participants must
also be members of the multicast group. Thus we instantiate this
constraint when a participant sends IGMP messages to join a mul-
ticast group. The instantiated tree is cached key derived from the
source IP address and the multicast address.

Constraint C5: Packet sequence

I : IGMP V2Report or V3Report
B : RTPS Participant
E : RTPS Publisher or Subscriber
D : IGMP V3Leave or V2Leave

The bind step is triggered when a participant message is received
from the samemachine (IP address) to the samemulticast group. For
this constraint, there is no additional information beyond the fact
that the participant packet has been observed. If the constraint tree
cannot be retrieved using the source and multicast address, then
an IGMP join message was not previously received. This results in
a constraint violation.

The evaluation step is triggered when either a publisher or sub-
scriber packet is found. The constraint is used to detect spurious
DDS packets that are not associated with the appropriate multicast
group. When the host exits normally, it leaves the multicast group
by sending an IGMP leave message. At this stage, the constraint
tree is removed from the cache. The DSL code for this constraint is
shown below:

A Constraint-based Intrusion Detection System ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus

Figure 2: Constraint C5 Tree Skeleton.

CONSTRAINT C5
V (AND (EQ (SrcIPJ, SrcIPP) EQ (GroupIPJ, DstIPP))
INSTATNTIATE
IGMP Packet.Type is V2Member or
Packet.Type is V3Member
if V2Member
SrcIPJ = Packet.SrcIP
GroupIPJ = Packet.Groupaddress
Key = Packet.SrcIP, Packet.Groupaddress
endif
if V3Member
loop until Packet.groupRecordInfo

SrcIPJ = Packet.SrcIP
GroupIPJ = Packet.GroupRecord
Key = Packet.SrcIP, Packet.GroupRecord

end loop
endif
BIND
RTPS Packet.SUBMSG contains DATAPSUB
SEARCH Packet.SrcIP, Packet.DstIP
SrcIPP= Packet.SrcIP
DstIPP= Packet.DstIP
Key = Packet.SrcIP, Packet.Groupaddress
EVALUATE
RTPS Packet.SUBMSG contains DATARSUB or
Packet.SUBMSG contains DATAWSUB
SEARCH Packet.SrcIP, Packet.DstIP
EVAL Packet.SrcIP, Packet.DstIP
DESTROY
IGMP Packet.Type is V2Leave or
Packet.Type is V3Leave
if V2Leave
SEARCH Packet.SrcIP, Packet.Groupaddress
endif
if V3Leave
loop Packet.GroupRecordInfo

SEARCH Packet.SrcIP, Packet.Groupaddress
endif
END

7.2 Static Environment
While it is possible for a DDS publisher to change the topic it trans-
mits, it is not normal in a private network. The interface to the radar
in an ATC environment will not start sending �ight plan informa-
tion. In addition, the network con�guration such as IP addresses
also remains consistent. C8 is an EV constraint. It fails whenever a
publisher deviates from the behavior previously con�gured in the
con�guration settings of the ATC network.

A topic key is only published from a prede�ned set of
publishers - C8.

Constraint C8: Packet sequence

I : Initialize
E : RTPS Publisher
D : Finalize

In this case, the constraints are checked against a known con-
�guration that contains a list which associates the publishers IP
address with the topic name and quality of service (QoS). A set of
constraint tree is initialized from the con�guration for each pub-
lisher that contains the topic names and QoS. When a publisher
packet is encountered, the IP address, topic name, publisher Entity
and QoS are compared against the list values.

CONSTRAINT C8
V (AND (EQ (SrcIP) EQ (Topic) EQ(Entity) EQ(QoS))

INSTANTIATE Initialize
SrcIP = FactC8.SrcIP
Topic = HashKey(FactC8.TopicName)
Entity = FactC8.entityID
QoS = struct(FactC8.QoS)
Key = FactC8.SrcIP,
HashKey(FactC8.TopicName), FactC8.entityID

BIND
EVALUATE
RTPS Packet.SUBMSG contains DATAWSUB
EVAL Packet.SrcIP,
HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.entityID, struct(Packet.QoS)

DESTROY
END

ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus Siam et al.

To minimize manual intervention, the constraint engine can be
run in a learning mode on a known clean environment in which
the constraint records the information rather than validating the
information.

7.3 Healthy Communication Channel
The RTPS protocol identi�es the application data sent from a pub-
lisher to a subscriber using a writer entity key. This key is generated
dynamically by the publisher each time the DDS application is run.
The publisher packet links the topic name to the writer entity key.
Thus to determine if a data packet from a particular IP address is
legitimate, the IDS must have �rst cached the writer entity key from
the previous publisher packet. In addition, the DDS framework may
choose to transmit data packets directly using a unicast address
instead of using a more general multicast address. Constraint C11
is used to validate the communication channel between a publisher
and a subscriber.

Data of certain topic is considered valid if it is produced
from a valid publisher and consumed by a valid subscriber -
C11.

Since either a publisher or a subscriber may broadcast �rst, both
orders must be checked by the constraint. However, in both cases,
the data is transferred via unicast communication. The constraint
checks that the data carried by a unicast application data packet is
a topic understood by both the publisher (as identi�ed by the data
packet source IP address) and the subscriber (as identi�ed by the
data packet destination IP address).

Constraint C11: Packet sequence

I : RTPS Publisher or Subscriber
B : RTPS Subscriber or Publisher
E : RTPS Unicast Data
D : IGMP V3Leave or V2Leave

This constraint is instantiated by either a publisher or a sub-
scriber packet and stores the source address of the publisher or
destination address of the subscriber into the constraint tree. For
a publisher packet, the entity key is also stored in the constraint
tree. The tree is cached using the publisher’s IP address (available
as the destination IP address of the subscriber’s packet) and the
topic name.

The bind step is triggered by the opposite packet of the instanti-
ate step to insert either the subscriber’s IP address or the publisher’s
IP address and entity key into the constraint tree. The bound tree is
cached using a four element key: publisher’s IP address, publisher’s
writer entity key, subscriber’s IP address, and the topic name.

Data packets are used to evaluate the constraint tree. The source
and destination IP addresses, topic name and entity key are used to
retrieve the constraint tree for evaluation. The constraint succeeds
if the entity key is the same used by a publisher when it established
the unicast connection with a subscriber. The DSL code for this
constraint is shown on the right.

CONSTRAINT C11
V (AND (EQ (SrcIPPu) (EQ (entityIDPu) (EQ (SrcIPSu))
INSTANTIATE
RTPS Packet.SUBMSG contains DATAWSUB or
RTPS Packet.SUBMSG contains DATARSUB
if Packet.SUBMSG contains DATAWSUB
if SEARCH HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.DstIP
BINDCALL Packet.SrcIP, Packet.entityID

else
SrcIPPu = Packet.SrcIP
entityIDPu = Packet.entityID

endif
Key = HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.SrcIP

endif
if Packet.SUBMSG contains DATARSUB
if SEARCH HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.DstIP
BINDCALL Packet.SrcIP

else
SrcIPSu = Packet.SrcIP

endif
Key=HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.DstIP

endif
BIND
RTPS Packet.SUBMSG contains DATAWSUB or
RTPS Packet.SUBMSG contains DATARSUB
if RTPS Packet.SUBMSG contains DATARSUB
SEARCH HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.DstIP
SrcIPSu = Packet.SrcIP
Key=HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.SrcIP

endif
if RTPS Packet.SUBMSG contains DATAWSUB
SEARCH HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.DstIP
SrcIPPu = Packet.SrcIP
entityIDPu = Packet.entityID
Key=HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.DstIP

endif
EVALUATE
RTPS Packet.SUBMSG contains DATASUB
if IsUnicastComm(Packet.SrcIP,Packet.DstIP)
SEARCH HashKey(Packet.TOPICPARMS.TOPICNAME),
Packet.SrcIP
EVAL Packet.SrcIP,Packet.entityID,Packet.DstIP

endif
DESTROY
IGMP Packet.Type is V2Leave or
IGMP Packet.Type is V3Leave
SEARCH Packet.SrcIP

END

A Constraint-based Intrusion Detection System ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus

We show that our proposed constraints are multi-packet con-
straints dependent on multiple protocols. Since these constraints
are not similar, it can be deduced that the proposed DSL is capable
of expressing all the network constraints related to DDSmechanism
in a private network.

Figure 3: The Simulator Architecture.

8 THE DSL AND SOLUTION CODE
Figure 4 corresponds to the C code that handles the constraint C11.
As mentioned already, the solution is yet to be generated from the
DSL, we only show that the DSL code can be directly mapped to
the constraints solution code.

The constraint tree is instantiated at Line 8 or 11 when the IDS
receives a publisher or a subscriber packet. Both functions can jump
to bind step if the tree is already instantiated by the counterpart
entity. Line 15, 16, and 17 show that C11 is only evaluated when
the IDS receives a DATA packet and the data is transferred from a
publisher to a subscriber via unicast communication. Figure 4 also
shows the C code for evaluating constraint C11 at Line 21. It starts
with looking for an already bound constraint tree in the cache at
Line 24. Later, at Line 25, 26, and 27 the values from the packet are
matched with the leaf nodes of the tree. If it does not match, then
the constraint is considered to be violated. Finally, at Line 35 and 41,
we destroy the constraint tree when the IDS encounters a V2Leave
or V3Leave message.

9 EVALUATION
In order to evaluate our approach, we developed an experimental
network which acts as a simulator of an ATC system. Experiments
are conducted on several PCAP2 �les captured from the simulator.
We test the IDS with three constraints described earlier.

9.1 Environment
The Canadian Automated Air Tra�c Control System (CAATS)[3]
uses the RTPS protocol to share data between devices, controlers
and ATC centers. We adapted the Euroscope ATC simulator[6]
to use the RTPS protocol[15]. Figure 3 shows the simulator as
deployed at Queen’s University. The network architecture is built
based on the proposal from Lemay et al. [13]. Six DDS machines
FS1, FS2, FS3, FS4, FS5, and FS6 are connected by three networks.
One network, labeled control, connects to all the machines and the
2Network tra�c captured �le which can be understood by an application capable of
reading the format such as Tcpdump, Wireshark.

router and is used to control the experiment. Two networks, Exp1
and Exp2 carry the experimental data. Both of the machines, the
router, and the networks are deployed in the KVM (Kernel-based
Virtual Machine) environment [22]. Each machine in this network
is performing dual role of Data Distribution service (DDS). They
can be a publisher-publisher (P:P) or publisher-subscriber (P:S) or
subscriber-subscriber (S:S). The normal operation between these
machines produces RTPS network tra�c. For generating IGMP data,
these machines are placed on separate network segments so that
the router is used for multi-casting. With the help of Wireshark
on the router, we capture the tra�c from one of the experimental
networks.

9.2 Detection Results
The �rst part of the experiment is to run the IDS against the PCAP
�les to verify that all the occurrences of three constraints could
be successfully checked. Since each PCAP �le contained the full
process of a DDS running with multiple publishers and subscribers,
we expect a high frequency of successful evaluation for the three
constraints.

Table 1 shows the number of constraints evaluated on each PCAP
�les. Since these PCAP �les are from a network without intrusions,
no constrains are violated. From this table, we can deduce that the
frequency of evaluating constraints is directly proportional to the
number of packets it is processing.

The IDS was then tested with the malformed PCAP �les. We
inserted some malicious sequences of packets in the PCAP �les
which should fail three constraints. All the illegitimate patterns
were captured and violations were logged. Due to lack of knowledge
on penetrating the protocols, we could not execute actual attacks
to the experimental network.

We also discovered that for one of the PCAP �les, two of the
machines were in an inconsistent state. One of themwas a publisher
that sent application level data message (DATA) without previously
sending publisher message (DATA(W)). The surplus data packets
caused constraint C11 to fail. Examining the trace in detail also
revealed that the othermachine, a subscriber did not send subscriber
messages (DATA(R)).

9.3 Performance
After con�rming the successful evaluation of the network con-
straints, our next goal is to determine the speed of their satisfaction.
The optimized technique runs faster than the naive one because
it reduces space requirement and run-time complexity as follows:
time complexity = (NT * NC * TT); and space complexity = NE (NT
* TT + NL + NLE); where,

• NT = Number of trees, NC = Number of constraints
• NL = Number of non-leaf nodes, NLE = NL in evaluations
• TT = Tree traversal time, NE = Number of evaluations

Running as a single thread on a third generation core i5-3337U
Mobile 2.7 GHz laptop with 7.7 GB of RAM, the IDS takes between
11 to 13 seconds to process the Small PCAP �le with an average
throughput of 1160 MB/sec. The IDS runs on Ubuntu 16.04 oper-
ating system with kernel version of 4.10.11. Figure 5 shows the

ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus Siam et al.

1 void FULL_RTPS_callback(FULL_RTPS * r, PDU * thePDU){

2 struct HeaderInfo *h = thePDU->header;

3 for(int i = 0; i < r->submsgcount; i++){

4 if (r->submsg[i].type == DATAWSUB_RTPS_VAL){

5 TOPICS_RTPS* topic_parms = r->submsg[i].ptr.datawsub_rtps.serializeddata;

6 unsigned int entity_id = topic_parms->topicdata.ptr.entityid;

7 unsigned int topic_key = topic_parms->topicdata.ptr.topickey;

8 instantiateC11Pub(topic_key, h->srcIP, h->dstIP, entity_id);

9 }

10 else if (r->submsg[i].type == DATARSUB_RTPS_VAL){

11 TOPICS_RTPS* topic_parms = r->submsg[i].ptr.datarsub_rtps.serializeddata;

12 unsigned int topic_key = topic_parms->topicdata.ptr.topickey;

13 instantiateC11Sub(topic_key, h->dstIP, h->srcIP, entity_id);

14 }

15 else if (r->submsg[i].type == DATASUB_RTPS_VAL){

16 if (IsUniCastChannel(h->srcIP, h->dstIP)

17 evaluateC11(topic_key, h->srcIP, h->dstIP, entity_id);

18 }

19 }

20 }

21 int evaluateC11(unsigned int topic, unsigned int PublisherIP,

22 unsigned int SubscriberIP, unsigned int entityID)

23 {

24 unsigned int* c11boundtree = GetC11BoundTreefromCache(topic, PublisherIP, SubscriberIP);

25 if (c11boundtree[0] == PubliserIP) {

26 if (c11boundtree[1] == SubscriberIP) {

27 if (c11boundtree[2] == entityID)

28 return 1;

29 }

30 }

31 return 0;

32 }

33 void V2Leave_IGMP_callback(V2Leave_IGMP *v, PDU * thePDU) {

34 struct HeaderInfo *h = thePDU->header;

35 destroyC11(h->srcIP, h->srcPort);

36 }

37 void V3Report_IGMP_callback(V3Report_IGMP *v, PDU * thePDU) {

38 struct HeaderInfo *h = thePDU->header;

39 for (int i = 0; i < v->numgrps; i++){

40 if (v->IsLeave())

41 destroyC11(h->srcIP);

42 }

43 }

Figure 4: Corresponding C code for Constraint C11

comparison of runtime of the two techniques proposed in this pa-
per. The naive technique is slower than the optimized technique
during processing the small PCAP �le.

We also present a relation between throughputs of the data sets
and runtime of the IDS (adopting optimized technique) in Figure 6.
The runtime of the IDS is inversely proportional to the throughput
of the PCAP �les. The performance of the IDS remains constant
with larger �les as all the PCAP �les have similar throughputs. This
indicates that the IDS is capable of handling large network.

9.4 Scalability
We have already mentioned that our IDS achieves good runtime in
terms of evaluating the constraints. However, the question remains
whether the IDS can process PCAP �les with more throughputs at
a constant speed. The determination of memory consumption of
our IDS is necessary to decide whether this IDS is applicable in a
network or not.

A Constraint-based Intrusion Detection System ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus

Table 1: Evaluation Results of Three Constraints

PCAP File Number of Packets Number of Evaluations
Small File (1.7 GB) 10,707,581 6,787,031
Medium File (3 GB) 21,415,162 28,999,751
Large File (7 GB) 31,946,324 47,115,568

Table 2: Resource Usage of Three Constraints

PCAP File Number of Trees RAM Usage Heap Size Memory Shu�ed
Small File (1.7 GB) 109 656 KB 4.6 KB 2497 MB
Medium File (3 GB) 120 (+9.1%) 678 KB 4.6 KB 3576 MB
Large File (7 GB) 138 (+13%) 696 KB 4.6 KB 4788 MB

Figure 5: Naive vs. Optimized Technique Comparison.

Figure 6: IDS Runtime vs. PCAP Throughputs.

Table 2 shows the number of trees generated by the IDS is directly
proportional to the size of the PCAP �les. It slowly increases with
the number of packets. The percentage of growth of the constraint
trees indicates that the IDS can be used in large scale. The other
metrics in the table represent memory operations that occurred
during each evaluation. First, we calculated the RAM usage of the
IDS which is under 1MB on each occasion. The RAM usage also
shows a slow escalation in contrast with the size of the PCAPs. The
important issue to notice here is that the heap allocation of the
IDS remained constant. It means that the process did not need to

allocate more memory after the initialization. We computed this
value by using sbrk [14] system calls to monitor the heap size. The
last metric demonstrates the amount of memory used by the IDS
to generate alerts. Overall, the purpose of these values is to verify
that there is no sudden increase in memory operation.

9.5 Reliability
Since our IDS is given privileges to monitor all the tra�c, it can be
a possible entry point for an attacker to initiate an attack. Tuning
an IDS to detect inside attacks is not easy [8]. If an attacker can
detect vulnerabilities in the source code, the IDS becomes an reliable
and insecure. At the �nal stage of the experiment, we decided to
examine the reliability of the IDS source code. We executed the
Valgrindmemcheck [25] feature to locate evidence of memory leaks
and the possibility of a bu�er over�ow in the full solution. With
multiple runs over the PCAP �les, the full process passed each time
without showing any memory leaks or allocation errors.

The results show that this IDS is resourceful to be used in a
network and does not require signi�cant memory to operate. How-
ever, we did not calculate common evaluation metrics such as false
positive rates [21], false alarms and plot the ROC curve of our IDS.

10 RELATEDWORK
Detecting intrusions by analyzing the network behavior is not a
novel approach. Numerous intrusion detection techniques can be
found based on this idea [1]. However, using constraints instead
of rules for expressing vulnerabilities is not that common. The
e�ectiveness of the proposed approach depends on how good we
are to solve these constraints. Several researches shows di�erent
ways of solving IDS rules. On the contrary, none can be found to
discuss any solution related to network constraints.

Network tra�c involves a continuous stream of data. Satisfying
network constraints can be compared to �nding frequent patterns in
the data stream. A few research are presented related to constraints
and data mining. Lini Susan et al. survey the available approaches
of mining constraints on the data streams [12]. Rob Potharst and A.
J. Feelders present the idea of using classi�cation tree for solving
monotonic constraint [18] with frequent patterns.

The main challenge of this paper is to �nd a technique which
can be used to satisfy constraints on continuous data stream in-
stead of static datasets and execute the full operation at high speed.
Although previously mentioned work show related mechanisms

ECBS ’17, August 31-September 1, 2017, Larnaca, Cyprus Siam et al.

to our IDS, they are not capable of handling a network tra�c. In
a related e�ort, Andreia Silva and Cláudia Antunes show us the
process of managing constraint tree to perform data mining [23].
The main drawback of their approach is constant update of pre�x
tree which causes huge memory overhead. Similar to this research,
they also show two algorithms: naive and e�cient one to achieve
their desired results.

For the second approach we proposed a DSL for expressing the
network constraints. The idea of gaining run-time performance
depends on this proposed DSL. Expressing intrusions in a network
through constraints is not a new idea. We �nd one particular re-
search where they develop critical rules for SCADA system with
Programmable Logic Controller (PLC) systems in a private net-
work [4]. It shows a rule language set to de�ne the normal pattern
of operations in that system. However, they do not show the map-
ping between the rule set and actual solution. Another approach
is presented by Pedro Salgueiro and Salvador Abreu where they
show a DSL to express network constraints [20]. They achieve par-
allel processing of several constraints. However, their approach is
not applicable for multi-packet constraints which require liveness
property. The DSL developed in this paper is capable of expressing
multi-packet constraints.

11 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented an IDS to monitor the network
tra�c in an e�ective manner. We have shown the functional en-
hancements of our initial framework by proposing two tree-based
techniques to satisfy network constraints. We have explained an
intermediate DSL needed to evaluate network constraints. The
DSL is not meant to be used by an IDS user and is generated from
protocol speci�cation language. The proposed DSL is capable of
expressing all the network constraints developed in this thesis. We
have also demonstrated that all the constraints are evaluated in
an experimental private network. The data sets produced by the
network has a throughput of a realistic network tra�c. We have
also shown that our IDS can detect some network irregularities
using the constraints demonstrating that it is capable of monitoring
the overall health of a network.

The next goal of this research is to generate the constraint code
automatically from our DSL. Also, we will determine the correlation
between user speci�cation and the DSL. We will introduce more
anomalous tra�c in our simulation and calculate the success rate
of detecting attacks in case of constraint failure. We will also de�ne
the threat models needed to run generalized experiments in DDS
environment. In the future, the generalized principles of this IDS
will also be considered for public networks with more protocols.

ACKNOWLEDGMENTS
This research is funded in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and the Department
of National Defense (DND), Canada.

REFERENCES
[1] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. 2016. A survey of

network anomaly detection techniques. J. Network and Computer Applications
60 (2016), 19–31.

[2] Bowen Alpern and Fred B. Schneider. 1986. Recognizing Safety and Liveness. In
Distributed Computing, Vol. 2. 117–126.

[3] NAV CANADA. AV CANADA: Media - The Canadian Automated
Air Tra�c System. http://www.navcanada.ca/EN/media/Pages/
publications-corporate-direct-route-story-1.aspx.

[4] Andrea Carcano, Igor Nai Fovino, Marcelo Masera, and Alberto Trombetta. 2009.
State-Based Network Intrusion Detection Systems for SCADA Protocols: A Proof
of Concept. In Proc. of the Critical Information Infrastructures Security (CRITIS),
4th International Workshop, Bonn, Germany. 138–150.

[5] Lesley Carhart. Incident Response Team. https://www.tunnelsup.com/
who-makes-up-an-computer-security-incident-response-team/. (????).

[6] Gergely Csernak. EuroScope - power of control. http://www.euroscope.hu.
[7] Dorothy E. Denning. 1987. An Intrusion-Detection Model. In IEEE Trans. Software

Eng., Vol. 13. 222–232.
[8] Nathan Einwechter. 2002. Preventing Insider Attacks. https://www.symantec.

com/connect/articles/preventing-and-detecting-insider-attacks-using-ids.
(2002).

[9] B. Fenner, H. He, B. Haberman, andH. Sandick. 2006. Internet GroupManagement
Protocol (IGMP) Multicast Listener Discovery (MLD)-based Multicast Forwarding
(IGMP/MLD Proxying). https://tools.ietf.org/html/rfc4605. (2006).

[10] Md Siam Hasan, Ali ElShakankiry, Thomas Dean, and Mohammad Zulkernine.
2016. Intrusion Detection in a Private Network by Satisfying Constraints. In Proc.
of the 14th Annual Conference on Privacy, Security and Trust. 623–628.

[11] Ms. Avinash Kaur, Ms. Purva Sharma, and Ms. Apurva Verma. 2014. A Ap-
praisal Paper on Breadth �rst search, Depth First search and Red Black Tree. In
International Journal of Scienti�c and Research Publications, Vol. 4.

[12] Lini Susan Kurien, Sreekumar K, and Minu Kk. 2014. Survey on Constrained
based Data Stream Mining. In International Journal of Computer Applications
(0975-8887), Vol. 107. 12–15.

[13] Antoine Lemay, José M. Fernandez, and Scott Knight. 2013. An Isolated Virtual
Cluster for SCADA Network Security Research. In Proc. of the 1st International
Symposium for ICS & SCADA Cyber Security Research 2013 (ICS-CSR), Leicester,
UK. 88–96.

[14] Fabian Monrose, Marc Dacier, Gregory Blanc, and Joaquín García-Alfaro. 2016.
Research in Attacks, Intrusions, and Defenses. In Proc. of the 19th International
Symposium (RAID), Paris, France, Vol. 9854.

[15] Louis-Philippe Morel, Jose M. Fernandez, Simon Guigui, and Thomas R Dean.
2016. Adapting a Virtual Flight Simulator to DDS. Technical Report. Ecole
Polytechnique.

[16] Peter Nightingale. 2011. The Extended Global Cardinality Constraint: An Empir-
ical Survey. In Arti�cial Intelligence Journal (AIJ), Vol. 175. 586–614.

[17] O’Reilly. 2007. Write Your Own Snort Rules. http://archive.oreilly.com/pub/h/
1393. (2007).

[18] Rob Potharst and A. J. Feelders. 2002. Classi�cation Trees for Problems with
Monotonicity Constraints. In Special Interest Group (SIG) on Knowledge Discovery
and Data Mining Explorations (SIGKDD), Vol. 4. 1–10.

[19] Jean-Charles Régin. 1996. Generalized Arc Consistency for Global Cardinality
Constraint. In Proc. of the Thirteenth National Conference on Arti�cial Intelligence
(AAAI) and Eighth Innovative Applications of Arti�cial Intelligence Conference
(IAAI), Portland, Oregon, USA, Vol. 1. 209–215.

[20] Pedro Salgueiro and Salvador Abreu. 2010. On using Constraints for Network
Intrusion Detection. In INForum - Computer Science Symposium. 637–648.

[21] Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, and Karama Kanoun. 2016.
Anomaly Detection and Root Cause Localization in Virtual Network Functions. In
Proc. of the 27th IEEE International Symposium on Software Reliability Engineering
(ISSRE), Ottawa, Ontario, Canada. 196–206.

[22] Ryan Shea and Jiangchuan Liu. 2012. Network Interface Virtualization: Chal-
lenges and Solutions. In IEEE Network, Vol. 26. 28–34.

[23] Andreia Silva and Cláudia Antunes. 2013. Pushing Constraints into Data Streams.
In Proc. of the 2nd International Workshop on Big Data, Streams and Heteroge-
neous Source Mining: Algorithms, Systems, Programming Models and Applications
(BigMine), Chicago, Illinois, USA. 79–86.

[24] H. Schulzrinne snf A. Rao and R. Lanphier. 1998. Real Time Publisher Subscriber
Protocol (RTPS). https://www.ietf.org/rfc/rfc2326.txt. (1998).

[25] Valgrind. 2007. The Valgrind Quick Start Guide. http://valgrind.org/docs/manual/
quick-start.html. (2007).

[26] Songtao Zhang, Thomas R. Dean, and Scott Knight. 2006. A Lightweight Approach
to State Based Security Testing. In Proc. of the 2006 conference of the Centre for
Advanced Studies on Collaborative Research, Toronto, Ontario, Canada. 341–344.

