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Abstract— With the advancement of newer technologies, the
frequency of malicious attacks is growing rapidly. Even private
networks without external connections cannot hide from these
attacks. Constant monitoring of the network is a vital element
of an organization's security system. Among many monitoring
techniques, network behavior analysis has become a common
practice. Restricted private networks are characterized by a
limited number of protocols. The normal traffic pattern of a
network can be modeled as network constraints. Violation of
any of these constraints indicates that an intrusion has occurred.
This paper presents a novel framework to detect intrusions
in a private network. We illustrate the framework with ten
significant constraints on the real-time publish, subscribe and
internet group management protocols. We present how the
framework evaluates these constraints against traffic from an
experimental network to prevent attacks.

I. INTRODUCTION
Private networks or intranets are networks created by a

single organization that controls its security policies and
network management. This is a popular choice as it increases
the security of the system by preventing external access.
Critical infrastructures such as telecommunication, water,
and power plant maintain this type of network to protect their
industrial control operation from outside attacks. However,
even a private network is not fully secured. If malware is
injected into the network using vectors such as USB drives
or installation discs then the security of the entire network
can be compromised. The Stuxnet worm was used to attack
the nuclear plant at Natanz in order to interfere with Iranian
nuclear program [1]. The worm was distributed by USB
flash drives and internal network connections. The main
purpose of this attack was to modify the behavior of the
programmable logic controllers of that power plant while
replacing the monitoring libraries to mask the attack.

The above mentioned attacks show the necessity of de-
veloping more protection for private networks. Perimeter
checking such as firewall rules and authentication policies
are useful defensive techniques, but lack the abilities to
monitor the ongoing network traffic. Intrusion detection
systems (IDS) are needed. Network-based IDS can be catego-
rized as signature and anomaly based [2]. Unlike signature-
based IDS, zero-day attacks may be detected by anomaly-
based IDS because attacks break the normal packet flow
patterns [3]. Numerous anomaly-based detection techniques
have been developed in the last decade [4].

A conventional network runs a wide range of protocols and
services. It is difficult to characterize the behavior of such

a network because of busy network traffic. However, some
private networks, such as command and control networks or
industrial control networks use fewer protocols. Recognizing
abnormal patterns in this kind of traffic should be easier.
The normal behavior of this network can be characterized
as a set of constraints. While monitoring the network, if
any constraint is violated, it should be a clear indication
of an intrusion. We propose a framework to evaluate these
constraints against network traffic in real time.

This paper is an initial exploration of the proposed frame-
work using two protocols: Internet Group Management Pro-
tocol (IGMP) [5] and Real-Time Publish-Subscribe Protocol
(RTPS) [6]. RTPS is implemented on Data Distribution
Service (DDS), a protocol used in different application do-
mains. Real-time DDS provides effective support for mission
and business critical applications such as financial trading,
air traffic control management, and complex supervisory
and telemetry systems. The positive side of DDS is the
availability, reliability, safety and integrity of services in a
real-time environment. But the mechanism has numerous
security holes. The proposed framework should be able to
alert against several attacks. The framework is evaluated
against captured PCAP1 files on a closed network. For this
exploration, we derive ten network constraints over the two
protocols. Four of them are constraints on IGMP protocol
and the remaining are RTPS constraints. These constraints
are satisfied against normal traffic.

Paper Organization: The rest of the paper is organized
as follows. Section II gives an overview of our framework.
Section III describes the ten constraints and threats related
to their violation. Section IV explains the implementation in
detail. The evaluation environment and findings are presented
in Section V. Section VI reviews the related research to this
work. Finally, Section VII provides conclusion and states our
future plans for this research.

II. FRAMEWORK

The proposed framework has three modules: Scanner,
Parser, and Constraint Checker. Figure 1 shows a simpli-
fied version of interaction among these modules. The first
module, Scanner, reads the packets from a PCAP file and
extracts the IP payload. These packets are parsed in the

1Network traffic captured file which can be understood by an application
capable of reading the format such as Tcpdump, Wireshark [7], [8].



Parser module. It converts them into C data structures for the
use of the Constraint Checker. For every single packet, the
Scanner passes packet envelope to the Parser. The envelope
contains:

• Source IP
• Destination IP
• Source port (for RTPS Packets)
• Destination port (for RTPS Packets)
• Arrival time

Scanner Parser Constraint
Checker

Fig. 1. Modules of Intrusion Detection Framework

The envelope is passed in turn along with the parsed
packet to the Constraint Checker. If the Parser fails to parse
the packet, including any context sensitive constraints, an
alert is generated. Examples of failures are errors in lengths
(i.e., attempted buffer overflows) and malformed data (i.e.,
nonsensical date or time values). If the packets can be
successfully parsed, they are sent to the final module for
constraint satisfaction. Examples of constraints are ensuring
read/write packets conform to the initial open requests, or,
in the examples we use in the paper, that all members of a
multicast group are participants in a DDS domain.

The initial parser, inherited from previous penetration test-
ing research [9] uses a general engine that is parameterized
by a grammar graph. This graph is generated from a Syntax
Constraint Language (SCL) [10] protocol description. SCL
is a derivative of ASN.1 that contains XML markup to
provide both context sensitive parsing constraints and general
constraints. Grammar for IGMP and RTPS are validated
against multiple sources of network data to ensure that the
grammar is correct.

During evaluation period of this parser against packet data
from an industrial partner, it appeared too slow for our intru-
sion detection prototype. The new Parser is a handwritten,
top-down, context-sensitive parser. The new parser has been
designed with the intention of automatically generating their
source code in the future. That is, we have manually followed
a rigorous approach to translating the SCL to produce a hand-
coded parser.

The Constraint Checker implements the constraints de-
scribed in the next section. It is also currently handwritten
and designed as a template to be automatically generated in
the future from protocols specified in SCL.

III. NETWORK CONSTRAINTS

Network constraints define the normal behavior of the net-
work. The constraints that define the structure of each packet
are handled by the Parser but constraints between multiple
packets are handled by the Constraint Checker. Normally
an IDS uses rules or events to represent flow patterns of a
network traffic [11]. We introduce the concept of constraints
in a network because it represents more concise actions than

rules [12]. These constraints are developed based on the
protocol documentation [5] [6] and some attack patterns on
RTPS protocol. The main objective of this research is to
make the network secure from attacks. The constraints we
are proposing are much easier to understand and flexible to
update.

A. IGMP Constraints

1) Frequency of join report (C1): Hosts do not wait for a
query from the router so that it can send a membership report
to join a specific multicast group. A host will transmit the
join report whenever it decides to join the group. To cover
the possibility of the initial report being lost or damaged, the
host repeats the join report once or twice after a short delay.
This is the foundation of our first constraint.

A host is only allowed to send at most two successive
join reports to a specific group – C1.

Violation of these rules indicates a malformed packet may
has been sent to the target. An attacker can issue a broad-
cast attack causing vulnerable hosts become unresponsive
and eventually start denying the service to legitimate users
leading to a denial of service (DoS) attack.

2) Frequency of membership report (C2): During the
multicast event, the router sends a periodic general or group-
specific query. It tries to determine the existence of hosts on
a specific network segment. In response to that query, active
hosts send back their membership reports. However, without
receiving a query, a host should not send a membership
report. This leads to our second constraint.

Between two queries, a host can send its membership
report only once to its specific group address – C2.

The main point of using IGMP for multicast operation is
to reduce the network traffic and achieve better performance.
A failure of C2 means an increase in the frequency of the
membership reports. An attacker can start multicast flooding
(symptom of a DoS attack) and eliminate the benefit of using
a snooping switch.

3) Destination of membership report (C3): If a router
transmits a general query, then all the members send mem-
bership reports to their specific group or to a new group.
This simple pattern of behavior brings the third constraint.

After receiving a general query, a host will eventually
send its membership report – C3.

For an attacker, there is a little motivation to forge a mem-
bership report message. However, being successful in doing
that, an attacker can become a recipient of the broadcast.

4) Validity of membership report (C4): When a host wants
to leave a group, it will send a leave message to its specific
group address. If the host sends a general leave message
to the all-router multicast group (224.0.0.2), then it wants
to leave from all the multicast groups. The life cycle of a
member helps us writing the fourth constraint.

After leaving a group, the host will not send any
membership report to any multicast group unless it joins
back again – C4.

Not satisfying this constraint should have similar con-
sequences of C3. If a membership report is sent from



a non-member host, it should be considered as a forged
membership report.

Denying services is not a direct effect of violating con-
straints C3 and C4. However, they are needed as part of
checking constraints of other protocols which use multicas-
ting such as RTPS.

B. RTPS Constraints

1) Validity of participants (C5): After the announcement
of an RTPS topic, there should be at least one publisher and
one subscriber for that topic. Publishers and subscribers are
dynamically discovered by Global Data Space (GDS) [6].
They can independently join or leave GDS. Judging from
the fact that RTPS depends on multicast groups, we present
our next constraint.

Host
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Fig. 2. Participants of an RTPS topic

All the subscribers and publishers must be valid
members of at least one IGMP multicast group. These
participants should send their membership reports to
specific group addresses before showing their interests
in a topic – C5.

C5 makes sure that all the subscribers and publishers are
authorized participants. An attacker can eavesdrop [13] with
malformed packets to get the privilege of being a reader or
writer. The situation leads to unauthorized access to data
published through infrastructure services. Sometimes, this
kind of attack can be used to prevent the authentication of
legitimate participants. Figure 2 explains the whole process
of how a host becomes a publisher or subscriber of a
particular topic.

2) Arrival of Participants (C6): After joining a group
for either publishing or subscribing, the host announces its
participation. This can be considered a liveliness property
because eventually a participation packet should be sent from
that host. The threshold time of arrival of a packet depends
on the network settings. We developed one constraint based
on this attribute. This time-dependent constraint [14] can be
compared to forward checking as rather validating conditions
from the past, it anticipates to satisfy conditions in near
future.

After joining a multicast group, participation should
be announced from that host in between a constant period
of time – C6.

The purpose of this constraint is to prevent authentication
hijacking attack of legitimate participants. An attacker can
legit identity using the GUID of another participant. They
can easily obtain the GUID by snooping traffic. The first
effect of this attack is the blockage of valid participants.

It is important to note that these two RTPS constraints
depend on the information gathered from the IGMP traffic
on the network. C5 and C6 are defined as multi-packet
constraints.

3) Participant's dual Role (C7): Publishers and sub-
scribers are connected via the same topic. A participant is
capable of playing the dual role of publisher and subscriber at
the same time. It is also possible that one participant become
publisher and subscriber of the same topic. This feature of
RTPS can be manipulated by an attacker.

A Participant cannot be publisher and subscriber of
the same topic – C7.

For compromised participant, it can record data for retrans-
mission on a covert channel or it can alter data and replay
it on the same domain. This can also increase the network
traffic causing DoS attack.

4) Subscriber becoming Publisher (C8): Normally a
group of subscribers listen to multiple instances of one
publisher publishing a particular topic. For achieving high
performance, multiple data writers can write to the same
instance of a single topic and multiple data readers can
receive updates from multiple instances of a single topic. By
gaining the knowledge about the quality of service (QoS),
a subscriber of the different domain can turn itself into a
publisher of that topic. This is the main motivation behind
the eighth constraint.

A topic key is only published from a specific set of
hosts – C8.

Some Air Traffic Control (ATC) systems use the RTPS
protocol. It has two radar systems, primary and secondary
radar. The secondary radar publishes more information than
primary radar which only provides basic information about
the aircraft position. These radars typically publish using
different RTPS topics. If suddenly a different machine starts
to publish data with either radars RPTS topic then the
integrity of information provided to the controller is lost. This
causes a lost of confidence in the system by the controllers
and pilots that rely on it and may even cause an air traffic
incident.

Listener

Writer Listener

Publisher Listener

Participant Listener

Reader Listener

Subscriber Listener

Topic Listener

Fig. 3. Listeners of RTPS Protocol



5) Publishing frequency (C9): Participants are attached
with three kind of listeners: subscriber, publisher, and topic
listeners. Figure 3 describes different type of listeners call
backs in RTPS protocol. RTPS uses either synchronous
or asynchronous mode for communication. In synchronous
mode, the listeners wait synchronously using a wait set with
query conditions [6]. This creates a big security concern for
publishers.

In synchronous mode, a publisher has to publish in a
fixed frequency rate – C9.

By changing query condition of the wait set, a publisher
can be blocked from publishing by putting it in sleep mode
forever. This is a classic style to run a DoS attack.

6) Quality of Service (C10): Before starting communica-
tion between publisher and subscriber of the same topic, it
is ensured that the QoS is compatible between them. They
should have a fixed request data rate and delivery level during
this full period of time.

The QoS policy between a subscriber and publisher
cannot be altered during run-time of the application –
C10.

Since the communication will break down if the QoS is
mismatched, any type of alteration to service policy leads to
DoS attacks.

IV. IMPLEMENTATION

This section presents a brief description of the framework's
implementation. This framework has been implemented in
C++ in Linux environment (Ubuntu 14.04). It only requires
a gcc compiler and an open source C/C++ network packet
capture library named libpcap to run.

In this framework, a separate grammar is used for each
of the Internet Protocol classes of the protocol. There is
a grammar for the RTPS messages, which will eventually
include all of the UDP protocols [15] on the network. For
IGMP protocol, a different grammar is used. The leftmost
token analysis of the grammar allows us to identify that the
field type is the initial field of all IGMP messages, and can
be factored out while parsing. This allows the constraint to
be hard-coded into the parser.

Returning the structure as a return value of the Parser
would require a union type or the use of an inheritance class
hierarchy. The Constraint Checker will duplicate part of the
Parser’s functionality to determine which structure had been
returned. We instead implement multiple entry points into
the Checker, one for each packet type. As mentioned before,
this part of the Checker will be generated automatically from
the protocol description and the constraints written in SCL.

The facts needed for the constraints are implemented as
a set of fixed length Member Pools, one for each group
address/net address pair. Each element of the queue contains
a list of the reports for an associated IGMP query. The pool
also contains a separate list of the members who joined
before the traffic experienced any kind of query. Both of the
pools are constantly updated whenever host leaves a group
or does not respond to two consecutive queries.

For RTPS packets, each time a topic is announced, the
authenticity of subscriber or publisher is verified by checking
these pools. A publisher generally associates itself with a
data writer and sends DATA(w) packets where subscriber
through data reader gets DATA(r) packets [6]. Token keys
of reader and writer objects associated with a participant are
constantly checked to ensure that they are not the same key.
A separate pool mapping hosts and tokens are managed to
validate the identity of the token publishers.

For two timer constraints C6 and C9, the threshold time is
learned from the learning mode. In learning mode, the traffic
flow is scrutinized to learn settings of that network. A certain
type of packets such as HEARTBEAT and DATA(p) [6]
are expected from specific hosts in between these marked
up timers, otherwise, these constraints are considered to be
violated.

V. EVALUATION

To evaluate our approach we need a source of RTPS and
IGMP traffic. The Canadian Automated Air Traffic System
(CAATS) [16] uses the RTPS protocol to share data between
devices, controllers and ATC centers [17]. This is used as
an inspiration to adapt the Euroscope Simulator and ATC
Display [18] to use the RTPS protocol to communicate
between the Flight Simulator server and the virtual ATC
display [19]. Euroscope is an ATC control console popular
with virtual aviation community that consists of pilots flying
for virtual airlines using flight simulators and air traffic
controllers using Euroscope to control the virtual airspace.
The use of Euroscope as a basis for the simulator provides
an arms length source of network data to use for our exper-
imentation. During this evaluation, we test the performance
and reliability of the proposed framework.

A. Environment

Figure 4 shows the simulator as deployed at Queen’s
University. The network architecture is built based on the
proposal from Lemay et al. [20]. Two machines, FS1 and
FS2, are connected by three networks. One network, labeled
control, connects to both machines and the router and is used
to control the experiment. Two networks, Exp1 and Exp2
carry the experimental data. Both of the machines, the router,
and the networks are deployed in the KVM (Kernel-based
Virtual Machine) environment [21].

Two modules, implemented in python, provide an interface
between the Euroscope simulation server, the Euroscope
ATC display and the experimental networks, respectively.
These modules take the existing Euroscope protocol and
repackage it as RTPS messages using the OpenDDS [22]
framework. By placing the two components on separate
network segments the router generates the appropriate IGMP
traffic. With the help of Wireshark on the router, we capture
the traffic from one of the experimental networks.

B. Detection Results

For properly assessing the effectiveness of the framework,
several malware are needed to perform DoS attacks on



Fig. 4. Network Architecture of the ATC Simulator

the experimental network. Instead of following that path,
numerous attack patterns are crafted in the captured PCAP
file that resembles some DoS attack to RTPS protocol. For
editing the PCAPs, WireEdit [23] tool is used. We craft
some malicious hosts and non-responsive known hosts on
the captured stream. Specific bytes of packet are altered to
plot the attack of run time QoS setting’s modification.

Table 1 shows the full success we have over alerting
constraint failures on ten attacks. We do believe that two
timer constraints C6 and C9, and QoS setting constraint C10
should produce false alarms [24] in a real network. However,
with current environment this rate cannot be determined.

To reduce false alarms, constraints need to be vali-
dated. During experimental evaluation, all the constraints
are checked and we manage to find one invalid constraint.
According to IGMP manual, the first version of C3 was:

After receiving a general query, only one host from
that network will eventually send its membership report.

With this version, the framework constantly fires C3 as all
the members start to send their membership reports period-
ically. After careful inspection of host response module, we
conclude that this is the normal behavior and update C3.

Constraints Number of DoS attacks Detection
C1, C2, C3, C4 3 yes

C5, C6 4 yes
C7, C8, C9 2 yes

C10 1 yes

TABLE I: Detection of Constraint Failures

C. Performance

We have captured the network traffic while running the
flight simulator for approximately one hour. The captures
consist of RTPS packets, with 0.48% IGMP packets. The
PCAP files are grown using the mergecap tool resulting in
three test files 667, 1331, and 2662 MB in size. Running as
a single thread on a 3rd generation core i5-3337U Mobile
2.7 GHz laptop with 7.7 GB of RAM, the files take between
3.9 and 15.6 seconds to process, for an average throughput
of 168.6 MB/s. In all cases, all the constraints are satisfied

over the simulated air traffic data only containing non-attack
packets. Better processing rate can easily be achieved by
throwing multiple threads to the process on a more powerful
machine. It shows that this framework can capture, parse
and satisfy constraints at the same level of accuracy on a
real-time basis.

VI. RELATED WORK

Intrusion detection is a well-established research area.
Countless mechanisms do exist for recognizing intrusions
from anomalous network behavior. Despite all these facts,
developing a full-fledged IDS based on constraint checking
is considered a novel approach. Constraint checking has been
used to solve problems in many fields of research area [25].
On the contrary, examples of researches going on constraints
in network application are not that common.

Few approaches can only be found similar to this frame-
work. One approach is to develop constraints for both hosts
and the private network ensuring proper authentication [26].
Another method is shown in [27] which develops critical
rules for SCADA system in a private network. The common
approach in these techniques is developing and evaluating
simple rules after careful examination of the full network
architecture and host specification.

For any type of IDS, validating the packet structure and
extraction of information should be the first essential step
to complete. A number of research methods show different
kinds of packet parsing techniques [28], [29]. Accuracy and
speed of parsing are the key factors as they change the
detection speed of an IDS. Automatic generation of protocol
parser receives some attention from the research community.
Gibb et al. [30] discusses a programmable parser based on
parse graphs. This approach is similar to our original parser
that is too slow to handle the traffic of our industrial partner.
Zhang et al. [31] shows the use of lex and yacc in a parallel
environment to achieve speed in packet decoding. Bangart
and Zeldovich [32] also investigate the automatic generation
of a packet parser from a context sensitive grammar. Their
approach is tuned for application network stacks, while
this framework is designed to encode multiple protocols in
a single grammar, including constraints between multiple
protocols. Significant research are conducted in the custom
code to implement a parser in Domain Specific Languages.
One of the most successful parser generators is the ANTLR
[33]. We use a similar approach but include context sensitive
parsing constraints.

Several open source detection tools are currently available
such as Snort, Suricata, and Bro [34], [35]. These tools offer
highly effective features and gigantic rule sets. With the help
of customized plugins, they are also capable of processing
IGMP and RTPS protocol. However, it requires building
complicated rules to prevent any serious attack. These rules
are a lower level of abstraction where our framework aims at
a higher level. Network constraints are built from the idea of
detection rules. Snort has a feature called dynamic/activate
rule [11]. This type of rule triggers a set of actions to
monitor one specific event. The role writer needs to make
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the proper assumption of the timing of the sequences rather
than anticipating the next packet of interest for some period.
This is where the proposed network constraints are powerful
with their liveliness properties.

VII. CONCLUSIONS AND FUTURE WORK

The importance of keeping a private network safe and
secure is rising with growing cases of newer kinds of
attacks. In this paper, we propose a basic framework to
recognize the valid network constraints of some protocols.
An initial evaluation of the framework is provided to show
that constraints can be used to express normal traffic of two
protocols. Tests are conducted on the framework against cap-
tured and altered data from an experimental private network.
The results show that the constraints can be evaluated against
normal traffic. The next goal is to determine the rate of attack
success in case of any constraint failure and capability of
recognizing unfamiliar attacks. We will improve the threat
model for RTPS and use those threats to examine the set of
constraints implemented and introduce anomalous traffic into
our simulation. We will also introduce several more protocols
into the simulation, including Network File System (NFS)
and Network Time Protocol (NTP).
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