
Linguistic Security Testing for Text Communication
Protocols

Ben W. Y. Kam, Thomas R. Dean

School of Computing, Queen’s University, Kingston, Canada
Electrical and Computer Engineering, Queen’s University, Kingston, Canada

Abstract. We introduce a new Syntax-based Security Testing (SST) framework
that uses a protocol specification to perform security testing on text-based
communication protocols. A protocol specification of a particular text-based
protocol under-tested represents its syntactic grammar and static constraints.
The specification is used to generate test cases by mutating valid messages,
breaking the syntactic and constraints of the protocol. The framework is
demonstrated using a toy Web application and the open source application
KOrganizer.

Keywords: security testing, mutation testing, text-based communication
protocol.

1.Introduction

Despite widespread knowledge of classes of security bugs [16, 19], vulnerabilities
continue to occur. Security faults have serious consequences, such as the theft of
information or the complete failure of the system. This paper describes a framework
for testing that applies transformation techniques from the program comprehension
literature to generating test cases specific to the security of the system. Our general
approach is similar to previous research on binary protocols [1, 17, 18, 22], but the
flexibility of text based protocols such as iCalendar [6] or HTTP [8] raises new
challenges.

In our approach, we describe the protocol using a context free grammar with XML
markup to specify additional lexical, syntactic and context sensitive constraints. From
this augmented grammar we automatically generate a markup engine that transfers the
markup to captured valid test data. The markup is used to mutate the test data to check
for security vulnerabilities. We demonstrate the framework against applications using
the HTTP and iCalendar protocols, discovering a previously unknown vulnerability in
the Qt library in the process.

In next section, we discuss the goals of this paper. SST framework overviews and
SST components anatomy will be illustrated in Section 3 and 4 respectively. Section 5
states the SST low/middle levels concrete architectures. Section 6 reports experiments
in SST and follows with the related work. Finally, the conclusion and future work will
be drawn in the last section.

2.Goals and History

Binary protocols such as OSPF [15] are protocols in which the data exchanged is
transmitted in a similar representation to that used in memory. For example, the
integer value 4 is transmitted as the binary value 0x04 (8 bits) or the value
0x00000004 (32 bits). In text based protocols such as HTTP, use ASCII or
UNICODE, and the value 4 may be transmitted as the ASCII character ‘4’ 0x34.
While binary protocols provide some flexibility in lengths of fields, the number and
order of fields in the messages is fixed. Syntactic mutations to messages such as
deleting a field have little meaning, as the next sequence bytes in the message will be
interpreted by the system under test as the new value for the field. Binary protocols
also tend have limited support for the nesting of structures. Text based protocols have
a flexible syntax, often allowing extra spaces and newline characters, and when
MIME [4] or XML [5] are used as part of the encoding, allow flexible ordering and
deletion of fields. Thus the syntax and lexical properties of the protocol become valid
concerns for security and robustness testing.

Our previous versions of Protocol Tester [1, 17, 18, 22] handled binary protocols by
translating them to a textual form, mutating them using program transformation
techniques and then translating back to the binary format. The protocols were
described using a context dependent grammar, and XML markup that specified
constraints such as the types of fields or the relation between the length of one field
and the value of another. These markups are used by a test planner to insert a different
set of XML markup tags into the captured message sequences to guide the mutation.
While the tags used to guide the mutation was flexible and expandable, the set of tags
available for use in the protocol specification was hard coded into the tool set,
requiring code modification when they were extended.

Thus the goal of SST was a lightweight framework capable of handling the more
complex mutations for text protocols and at the same time supporting an easily
extensible markup system for specifying constraints in the protocol description. As
specified by Beizer “data validation is the first line of defense against a hostile
world”, all input data should conform to its grammar and the best input format should
be defined as a formal language [3].

3.SST Framework Overviews

The SST framework is similar to the structure of Protocol Tester, and consists of a
total of five modules: Capture, Markup, Mutate, Replay, and Oracle. Fig. 1 shows the
five components of the SST framework.

The protocol dependent module Capture is responsible for capturing and decoding
the network traffic between the client and the server. Capturing is done by a sniffing
component (Sniffer), which in the case of web applications is a modified version of
the Firefox browser allowing us to capture encrypted messages (https) in unencrypted
form. If the captured response messages are compressed or encoded a decoding
component is be invoked translate them to plain text. The Capture module also creates
a manifest file. The manifest file specifies the protocol, the server addresses, port
numbers and the information of proxy servers for each message. This allows SST to
test systems spanning multiple servers.

Original Response
message sequence

Request

Response

Request message
sequence

Markup Replay

Replayed Response
message sequence

Oracle

Test
results

Marked
up packet

Test cases
Mutator

Capture
Network

server

Figure 1: SST overview

The Markup module uses the protocol description file to insert markup into the

captured messages. This markup is then used by the Mutator module to generate the
test cases. Both of these modules are protocol independent.

The Replay module uses the manifest file generated by the capture module to
transmit the test cases to the server(s). When the mutated message is not the first
message in a sequence, the original versions of the previous messages in the sequence
are sent. The current version of the module is largely protocol independent, with a
custom component handling HTTP cookies and session information. In the future this
will be made protocol independent by adapting the approach for specifying state
dependent messages used in Protocol Tester [22].

4.Protocol Specification and Markup

SST uses a protocol specification to mutate captured messages to generate the test
cases. We distinguish between three levels of protocols in the specification. At the
lowest level we have the base format of the captured messages. Since we are
interested in text protocols, this is the lowest level above the TCP/IP stream protocol,
such as the HTTP protocol. This lowest level protocol may also serve as a container
for other protocols. For example, SOAP [9] can be used to encode remote procedure
calls within the HTTP protocol. At the highest level we have the application protocol
which assigns application specific meaning to messages, such as the messages related
to shopping carts. In this paper we discuss the specification of the low and middle
level protocols.

define request_line
 <enumeratedLiteral>< caseSensitive >[method]</ caseSensitive ></enumeratedLiteral>
 [space] [request_uri] [space] [http_version] [CRLF]
end define

Figure 4: Markup tags in the protocol grammar.

4.1 Syntax Specification
The protocol specification is created based on the syntax specification of the protocol.
We use the TXL language to specify the syntax of the protocols. Figure 2 shows a
partial grammar for the HTTP protocol. The non-terminal program specifies the
goal symbol of the grammar. Square brackets are used to indicate the use of another
non-terminal, the keyword repeat indicates multiple instances of a non-terminal
and the keyword opt indicates 0 or 1 instance. So in the figure, a
request_message consists of a request_line, followed by multiple
headers_message, a CRLF and an optional message_body.

Middle level protocols are specified by extending the lower level protocols.
Foremaple in figure 3, the SOAP protocol is defined by first including the HTTP
grammar (the include statement) and then extending the entity_header non-
terminal (the redefine statement). The entity_header non-terminal was
previously defined in the HTTP grammar.

4.2 Grammar Markup
The syntax of the protocol is extended using XML markup to specify constraints.

In the SST framework, the meaning of these constraints are open ended, as they are
simply markers to signal the location where the mutators should operate on the
messages. SST also supports the specification of linked tags. That is, a markup tag
that can be used to specify a relationship between two separate elements of a message.

The grammar is used to place the markup tags at the appropriate locations in the
captured messages. To specify the use of markup, the tester places the XML tags in
the grammar surrounding the grammar elements that represent the sections of the
message that the tester wishes to mutate. Figure 4 shows an example. In this example,
the request-line definition has been marked with both the enumeratedLiteral
and caseSensitive tags. These indicate that the method of the request line is one
of a limited set of literal values, and is case sensitive. When multiple tags are used,

% partial HTTP grammar
define program
 [request-message]
end define
define request-message
 [request-line][repeat headers_message]
 [CRLF][opt message_body]
end define
define request-line
 [method][space][request-uri][space]
 [http-version][CRLF]
end define

Figure 2: The partial low level HTTP

protocol

Include “http.grm”
redefine entity_header
 …
 | [SOAPAction]
end redefine
define SOAPAction
 [soap_uri][soap_message]
end define
define soap_message
 [xml_declaration][open_soap_envelope]
 [soap_header] [soap_body][close_soap_envelope]
end define

Figure 3: The middle level XML SOAP
protocol specification

they must be properly nested. From the grammar, SST generates a program that
inserts the markup into the appropriate place in the captured messages.

Figure 5 shows a snippet of the result of running the generated insert markup
program against a captured HTTP post request message. The request line has been
wrapped in the figure, but in the marked up message, it is a single line. As can be
seen from the figure, the XML markup has been inserted surrounding the literal POST
which is matched by the method non-terminal.

Figure 6 shows an example of a relationship tag. Relationship tags are identified
by presence of the id and root attributes. In this case all of the markup with the
same tag value are considered related to each other in some way. In this particular
case we are indicating that the value given in the Content-Length mime header
gives the length of the message body. Unlike the similar constraint in Protocol Tester,
this tag is not used as part of the parsing process, but used to indicate the relationship
so that the length mutator may make appropriate changes. Since the grammar may
match more than one instance in a given message, the id attribute is used to identify
each instance that was recognized. The % character is replace with a unique integer as
each instance is matched. The role attribute is simply copied allowing the mutator
to identify which part of the message is represented in each markup.

Figure 7 shows the instantiation of the length tag from figure 6 in a captured
message. The length tag with the length role has been added to the Content-
Length header, while the length tag with the value role has been added to the
message body. There is no limit to the number of roles for a markup tag that can be
specified, all will be inserted into the captured message by the generated markup
program.

<enumeratedLiteral><caseSensitive>POST</caseSensitive></enumeratedLiteral>/return.asp
HTTP/1.1
Host: 192.168.1.105
…

Figure 5: Nested Markups on the method POST

define Content_Length
 'Content-Length : [space] <length id="%" root="request_message" role="length"> [number]
 </length>
end define
define message_body
 <length id="%" root="request_message" role="value">
 [repeat token_or_key]
 </length>
end define

Figure 6: Length linked tag in the grammar

…
Content-Length: <length id="1" root="request_message" role="length">48</length>
…
<length id="1" root="request_message" role="value">FirstName=John&LastName=Smit
h &DOB=10%2F15%2F1980</length>

Figure 7: Length linked tag in captured message

4.3 Markup tags
As mentioned in the last section, each markup is implemented by its own mutator.

The generated insert markup engine simply moves the markup from the grammar to
appropriate parts of the captured messages. Thus the set of mutator tags is entirely
open ended. We demonstrate the framework with an initial set of markup tags and
mutators that illustrate the different purposes they serve and the types of mutators that
can be created.

Table 1 shows these initial markup tags for which mutators have been created. The
first of these, the enumeratedLiteral tag illustrates a tag in which the mutator is
generated from the grammar specification. It is used to indicate that the purpose of the
non-terminal is to generate one of a list of literal values. While this can be inferred
from an analysis of the grammar, the use of the tag allows the tester to indicate which
of these non-terminals should be tested. A separate program analyzes the grammar,
and for each instance of the enumeratedLiteral tag, genererates a mutator that
will alternate the values based on the values given in the grammar. In the example in
Figure 4, the method non-terminal was marked with this tag. The method non-
terminal recognizes the set of HTTP methods: GET, POST, OPTIONS, HEAD, PUT,
DELETE, TRACE and CONNECT. The generated mutator will modify the method in
the message shown in figure 5 from POST to each of the other alternatives. Similar
mutators can be generated based on common syntax vulnerabilities such as missing
termination tags.

Lexical tags are used when the lexical constraints are stricter than the lexical
tokens used in the grammar, or we want to substitute particular values for the tokens.
Our initial set of tags deals with changes to the case of the token, changes to
individual characters (for example, substituting “,” and ”:” for “.” in the HTTP
version of the request line), deletion of arbitrary literals such as mime headers, and

Table 1. The categorization of markup tags

Types Tags Purpose

Syntactic enumeratedLiteral
Change to another terminal provided
from grammar to alter the original
semantics

Lexical

caseSensitive Change the terminal letters from upper
case to lower case or vice

charSpecific Change the terminal character

dateSpecific Change the terminal date format

syntaxSpecific Alter the terminal characters

valueLimitation Change the terminal value to common
boundary values

stringSpecific Replace a string values with common
alternate strings

Relational length
Indicates that the number marked by the
length role gives the number of
characters in the value role.

Custom jpeg The content identified by the tag is an
embedded jpeg image (e.g. file upload).

changing values of integers and strings. The current mutators for integer and string
values targets buffer overflows, but other mutations are easily introduced.

We have only implemented one relationship tag, the length tag, but another
candidate tags is a mime type tag that links the Content-type header to the message
body allowing mutators to recognize specific content types for mutation. We have
implemented one custom tag that is inserted when embedded jpeg image are
recognized (image gallery web applications, for example). In this case, the mutator
extracts the embedded jpeg image, invokes an external binary mutator and then inserts
the resulting mutated images back into the request messages.

The markup can be specified by the tester in one of two ways, it can be manually
inserted directly into the protocol grammar, or alternatively, it can be specified
separately from the grammar. Fig 8 shows the use of the Grammar Merge Program
that merges a markup specification into a Generalized Protocol Grammar. The
markup specification contains alternate versions of grammar definitions from the
generalized grammar that includes the markups. It may also contain additional
definitions that are used in the alternate grammar definitions. Fig 9 shows an example
of such a file. The example shows a definition of http_version that parses the
version number as two numbers separated by a period, and the period has been
annotated with the charSpecific tag. The original definition of http_version, might use
a single floating point number. Thus this approach allows us to write a more general
protocol grammar and then specialize it for alternate testing strategies. In particular,
when crafting a grammar for a new protocol, we could use agile parsing techniques[7]
such as robust parsing and island grammars to adopt a minimal grammar specification
and then extend each part of the grammar in separate markup files to be tested
independently. Figure 10 shows an example of such an approach for the

Figure 8. The categorization of markup tags

define http_version
 HTTP / [number] <charSpecific> [period] </charSpecific> [number]
end define

define period
 `.
end define

Figure 9: A markup specification file

Generalized
Protocol
Grammar

Grammar
Merge Program

Combined
Protocol
Description

Markup
Specification

http_version non-terminal. In this variation, the http version is any sequence of
tokens or keywords that is not a carriage return followed by a linefeed. The not
keyword in TXL means that the particular non-terminal cannot be parsed at this point
in the input.

This approach has several advantages. First there is no need to implement the
grammar for the entire protocol, only the portions which are to be tested. Second, if
the generalized grammar is written exactly to the protocol specification, parts may be
difficult to mark. Thus the markup specification can provide alternate parses making
the markup tag placement easier. It also allows several testers to operate in parallel,
each using separate markup specifications on different parts of the generalized
grammar. Lastly, it is difficult to get a generalized grammar that will be suitable for
all testing. The markup specification can modify the grammar appropriately for each
test.

Figure 11 shows the process diagram of this portion of SST. The combined
protocol description is used to generate an insert markup program. The insert markup
program in turn is used to parse and insert markup into each of the captured messages.
The marked messages are then passed to mutators which run independently to
produce the test cases.

Figure 11: Markup and mutate process

define http_version define Token_or_Key
 [repeat not_CRLF_Token_or_Key] [token] | [key]
end define end define

define not_CRLF_Token_or_Key
 [not CRLF] [Token_or_Key]
end define

Figure 10: Generalized grammar

Combined
Protocol
Description

Marked up
Packet

Mutants

Mutants

Mutants

Mutation
engine

Mutation
engine

Mutation
engine

Generate
Insert Markup
program

Insert Markup Captured

Packet

Figure 12: Replay process structure

5.Replay and Oracle

The replay module consists of four components, an injector, a travel agent, a
realtime update module and a decoder. The process flow of this component is shown
in Fig 12. The injector is the primary component responsible for overall control of the
replay process. It fetches each of the mutants from the test suite, and uses the travel
agent to send the test case to the server. The travel agent is responsible for
communicating with the server. It handles monitoring the connection for the
response, and handling timeouts if the server crashes. The real-time update
component is used if the protocol has state dependent elements. For example, some
web applications use session cookies, or encode session identifiers into the URLs.

The realtime update component monitors the response messages and modifies the
appropriate elements of the request messages. The current real-time update
component is protocol independent using a regular expression matching engine to
locate the elements in the response and request messages. However the program that
generates the configuration file for this component is HTTP specific. In the future,
the approach can be made protocol independent by adopting the approach used by
Zang et al.[22].

The Injector is also responsible for maintaining the state of the database on the test
server. If needed, the injector will reinitialize the database, typically restoring it from
a snapshot prepared for the test.

The decoder component handles any compression or encoding of the response
packets, storing the response sequence in clear text so that the Oracle can compare
against the original set of responses.

The current oracle contains two phases addressing this task. The first phase is to
check whether the injector has completed each test run. This means all the packets in
a test run have been sent to the server. In some situations, the injector will stop the
test run after the mutated packet has been sent. This may be because the server is
unable to respond to any more requests after receiving the mutated packet. If the test
run passes the preliminary check, then the oracle will start a detailed analysis.

A detailed analysis is the second phase and consists of two stages. The first one
compares each character of the original response message to the response message
received from the mutated request message. If they are identical, it means the

 Mutants

Response
Sequence

Real time update

Decoder

Test Server

Travel Agent Injector

response message received from the mutated request message is well-formed.
However, if they are not identical, the current oracle cannot make the verdict that the
response message received from the mutated request message is well-formed. The
oracle will generate the report and the tester needs to analyze this report to make the
final decision.

6.Experiments
We have tested our approach by conducting two experiments on two separate
protocols. The first experiment is designed to show the correctness of the SST
framework. The second experiment on the iCalendar protocol demonstrates the
protocol independence of SST, and exposes a new vulnerability in the open source
application kOrganizer.

6.1Toy Web Applications
Several toy web applications were constructed that contained vulnerabilities for

six tags. These servers were used to validate the functionality of the framework before
attempting to find new, unknown errors in other applications. A total of six small tests
were conducted to demonstrate six different mutated packets that were sent to the toy
server successfully causing a web application, database and/or web server to run with
anomalous behavior.

One of the test cases uses the caseSensitive tag to change the method of the
request message “POST” to “post”. In the first test, IIS accepted the request message
and stored the posted message to the database. This experiment was retested using the
Apache2 server. The mutated message was correctly rejected by the Apache2 server.
All of the planted vulnerabilities were discovered by the framework.

6.2kOrganizer
The second experiment applied the framework to the open source kOrganizer. In

this case the capture module was not a modified firefox browser, but iCalendar files
generated by kOrganizer and Apple’s iCal. Instead of using an injector as the replay
component, we use a xmacroplay [21] to script the opening of the mutated iCalendar
files (kOrganizer cannot be given an iCalendar file on the command line). The oracle
is also simple since we are looking for a catastrophic failure of kOrganizer (i.e.
kOrganizer crashes). Thus our test is a script that copies each mutated iCalendar file
to a specified directory, opens a new instance of kOrganizer and runs an xmacroplay
script to instruct kOrganizer to open the file and exit. If the exit status is abnormal, or
the kOrganizer process is still running (i.e. it has deadlocked), then an error is
reported. There was an inherent inefficiency as xmacroplay must include multiple
worst case delays to ensure that the appropriate dialog box has been rendered by
kOrganizer before a mouse or keyboard event is sent.

In this experiment, the caseSensitive, charSpecific, dateSpecific, syntaxSpecific,
valueLimitation, and the stringSpecific tags were used to generate a total of 1026 test
cases from a single iCalendar file. The total running time was 244188 seconds (67.83
hours). Table 2 and Table 3 show the experimental setup information and testing data,
respectively. Of the 1026 test cases, one error was logged (test case 559). This test
case was one of those generated by the stringSpecific mutator to insert multiple string
values. This particular case changed the description field to a 16 Megabyte string,

causing a segmentation violation (SIGSEGV). Examining the code revealed that the
vulnerability was actually in the Qt interface library used to build KDE applications.

Table 2. The Second experimental setup information

Computer Operating system Memory KOrganizer
AMD3300+ Ubuntu 8.10 512M 4.1.4

Table 3. The data of the experiment two

Create 1086 Mutants 9.069s

Remove tags 45.742s

Test driver runtime 244188s

Total 244242.811s

7.RELATED WORK
There are many security flaws that can be found in literature about web

applications security testing. These flaws are created by violating the fundamental of
CIA security requirements. CIA stands for confidentiality, integrity, and availability.
Confidentiality holds when only authorized users have the ability to access data.
Integrity ensures data cannot be altered by an unauthorized user. Availability requires
that data should always be available to legitimate users.

If the CIA security requirements of web application is not met, multiple
consequences can result. First, it is possible to cause the web application, database,
and/or web server to crash. Second, users’ data and/or system information can be
stolen and/or modified. Third, computer resources can be wasted by illegal users.
Table 2 shows different kinds of security flaws caused by breaking CIA security
requirements. A slight change in the content of the packet by breaking the syntax
and/or semantics of the grammar will break the CIA. SST provides markup tags to
instruct mutation engines explicitly to perform the changes. For example,
stringSpecific tag instructs the mutation engine to replace the original string value
with a specially crafted string for SQL injection. If the attack is successful, the
information could be altered and/or stolen and compromises the confidentiality (C)
and/or integrity (I) of the security requirements.

TABLE 2. Consequence of CIA security requirements violation

CIA security requirements violation Security flaws
Confidentiality Information stolen
Confidentiality Information alternation
Confidentiality Privacy violations
Confidentiality Impersonation
Integrity Web application crash
Integrity Web server crash
Integrity Database crash
Integrity Information alternation
Availability Wasting computer resources
Availability Take over the system

There is a great deal of research on security testing of web application. Much of this
research focuses on SQL injection, cross-site scripting and command injection. Some
research also provides method to generate guards in the applications from the models.
User input strings must be passed through the guards for security checking prior to
accessing the database. Jing et al [12] use a non-deterministic finite state machine to
mutate packets. However their approach, like our previous research is focused on
binary protocols. Text is more flexible and less susceptible to value changes.

Aitel’s block-based network protocols security testing [2] is the most similar to
SST. However, the test cases generation obtained by random fuzzing variables only
breaks the syntactic constraint of the protocol grammar. SST, in addition to generating
random fuzzing values, also provides different types of markup tags to violate
syntactic and semantic of the protocol grammar. For example, relational type markup
tags break the semantics relationship between terminals.

Guido et al [13, 20] use the relational calculus and automata to formal model the
system’s required security requirements. Their security testing only can test
application level security. SST not only can test application level security, but also
low level and middle communication protocol level security.

Halfond et al [10, 11] propose a combination of static and dynamic analysis for
SQL injection protection of web application. For the static part, they build models
based on static analysis of the source code that contains all of the possible legitimate
SQL queries in a PHP application. Test cases generation is accomplished by injecting
additional SQL statements into a query to intentionally violate the model. The
dynamic analysis incorporates the comparison of runtime queries with the static
model. If the dynamic query violates the model, execution is halted and noted.

Merlo et al [14] use dynamic analysis of legitimate test cases and security
scenarios to build static models corresponding to the call site. A query invocation at
the call site will be compared to the corresponding model to check whether or not it is
a legitimate query. Both approaches focus on SQL injection, and do not address cross-
site scripting or command injection. The approach of Merlo et al has the advantage of
not relying on the source code and thus is capable of testing SQL-injection by
malicious code. Their method can be reused for other languages but an execution
environment with appropriate instrumentation is required.

The main contribution of our approach is that it is protocol independent, and can
be used to test most text based protocols. The other contribution is that we can easily
generate tests for multiple vulnerabilities such as cross-site script injection and
command injection. In addition our approach requires only the specification of the
protocol and direct access to the database to detect modification of the application
data.

8.Conclusion and Future Work
SST is a lightweight framework for generating security and robustness test cases for
text based network applications. The protocol is easily expanded by adding markup
tags and the mutators to implement each of the tags. We have demonstrated the
framework by expressing and testing two applications, each of which uses a different
protocol.

There are several ways in which the system can be extended. The first to add
more markup tags and more mutators. There is a lot of inherent flexibility in the

system. The current mutators only use attributes in the markup for the relationship
type of tag. The only attributes that have special meaning are the id, root and role
attributes. Other attributes can be used to pass parameters to the mutators such as
range of numeric values or expected maximum lengths for strings. In addition
mutators need not only use single tag types, but may perform mutations on multiple
tags simultaneously.

The second avenue of exploration is more syntactic dependent mutators. The
only one implemented in the SST prototype was enumeratedLiteral. One extension is
to identify and insert markup for non-terminals that implement this role by analyzing
the grammar. Other grammar based markup can also be added, such as changing the
order of or deleting elements of the captured messages.

We have already extended SST to handle higher level application protocols that
are build on top of the lower level protocols such as HTTP and SOAP. This involves a
domain specific language to automatically generate recognizers to identify messages
that are syntactically similar but semantically different, such as the difference between
a login request and a list shopping cart request. This allows the grammar to be refined
using agile parsing techniques and the tester to insert markup tailored to the semantics
of the message such as mutating user names and passwords in login requests.

REFERENCES

1. AboElFotoh, M., Dean, T.R., Mayor, R, “An Empirical Study of a Language Based

Security Testing Technique”, Proc. 19th IBM Centres for Advanced Studies Conference,
Toronto, Canada, November 2009, pp 112-121.

2. Aitel., D., “The Advantages of Block-Based Protocol Analysis for Security Testing”,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.1178& rep=rep1&type=pdf,
last accessed 2010.

3. Beizer B., Software testing techniques, Van Nostrand Reinhold Company, New York,
1990, ISBN: 0-442-24592-0.

4. Borenstein, N., Freed, N., “MIME Part One: Format of Internet Message Bodies,” Internet
RFC 2045, 1996.

5. Bray, T, Paoli, J, Sperberg-McQueen, C.M., Maler, E, Yergeau, F, “Extensible
Markup Language (XML) 1.0 (Fifth Edition)”, W3C , 2008.

6. Dawson F., Stenerson D., “Internet Calendaring and Scheduling Core Object
Specification(iCalendar),” Lotus, Microsoft, IETF RFC 2445, 1998.

7. Dean T. R., Cordy J. R., Malton A. J., Schneider K. A., “Agile Parsing in TXL”, Journal
of Automated Software Engineering, pp. 311 – 336, 2003.

8. Fielding R., Irvine UC, Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., Berners-
Lee T., “Hypertext Transfer Protocol - HTTP/1.1,” Compaq/W3C, Compaq, W3C/MIT,
Xerox, Microsoft, W3C/MIT, IETF RFC 2616, 1999.

9. Gudgin, M, Hadley, M, Mendelsohn, N, Moreau, J, Frystyk, H, Karmarkar, A,
Lafon, Y, “SOAP Version 1.2 Part 1: Messaging Framework (Second Edition),” W3C
Recommendation, 2007.

10. Halfond W. G. J., Orso A., “AMNESIA: Analysis and Monitoring for NEutralizing SQL-
Injection Attacks”, Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering (ASE '05), pp. 174-183, 2005.

11. Halfond W. G. J., Orso A., “Combining static analysis and runtime monitoring to counter
SQL-injection attacks”. In Proceedings of the 3rd International ICSE Workshop on
Dynamic Analysis (WODA), IEEE Computer Society Press, pp. 105-110, 2005.

12. Jing C., Wang Z., Shi X., Yin X., Wu J., “Mutation Testing of Protocol Messages Based
on Extended TTCN-3”, Proceedings of the 22nd International Conference on Advanced
Information Networking and Applications, pp. 667 – 674, 2008.

13. Jurjens J., Wimmel G “Formally Testing Fail-safety of Electronic Purse Protocols”,
Automated Software Engineering, IEEE Computer Society, pp. 408 – 411, 2001.

14. Merlo E., Letarte D., Antoniol G., “Automated Protection of PHP Applications Against
SQL-injection Attacks”, Proceedings of the 11th European Conference on Software
Maintenance and Reengineering, pp.191-202, 2007.

15. Moy, J, “OSPF Version 2”, Internet RFC 2328, 1998.
16. OWASP, The Open Web Application Security Project, http://www.owasp.org/, last

accessed: 2009.
17. Tal O., Knight S., Dean T. R., “Syntax-based Vulnerabilities Testing of Frame-based

Network Protocols”, Proceedings of the Second Annual Conference on Privacy, Security
and Trust, 2004

18. Turcotte Y., Oded T., Knight S., Dean T. R., “Security Vulnerabilities Assessment of the
X.509 Protocol by Syntax-Based Testing”, Proceedings of MILCOM 04 on Military
Communications Conference, pp. 1572 – 1578, 2004.

19. WASC Projects. “Web Application Security Consortium, Threat Classification.”
http://projects.webappsec.org/ Threat-Classification/, last accessed: 2008.

20. Wimmel G., Jurjens J., “Specification-based Test Generation for Security-Critical Systems
Using Mutations”, ICFEM, LNCS, Springer-Verlag, pp. 471-482, 2002.

21. Xmacro, http://xmacro.sourceforge.net/, last accessed April 29, 2010
22. Zhang S., Dean T.R., Knight G.S., “Lightweight State Based Mutation Testing for

Security”, Proc TAICPART-MUTATION 2007 , Windsor, UK, pp. 223–232, 2007.

