Augmenting NFS and TFTP protocols to an
Intrusion Detection System

A Technical Report
By Mohammad Salloum

COPASSTR20-3
Compass Group, Queen’s University
Kingston, ON, Canada
June 2020

Augmenting NFS and TFTP protocols to an
Intrusion Detection System

Mohammad Salloum
Department of Electrical and Computer Engineering
Queen’s University
Kingston, Canada
m.salloum @ queensu.ca

Abstract—All computer systems are prone to malicious attacks,
no matter how secure they are. There is no such thing as a fully
secure system. Even isolated private networks are being targeted
and successfully exploited. Therefore, network monitoring has
been adopted by security engineers to detect any malicious
intrusion and stop it before any damage is done. There exists an
intrusion detection system (IDS) based on satisfying constraints.
This IDS is practical in limited networks where the deployed
network protocols are known. Currently, the IDS supports the
IGMP, RTPS, ARP and NTP protocols. In this research, we will
add to the parser module of the IDS the parsing of the NFS and
TFTP protocols.

Index Terms—NFS, TFTP, Intrusion Detection System, Net-
work Monitoring, Parser Generator

I. INTRODUCTION

No matter how much a system is fortified, it will always
have a flaw through which an attacker can gain unauthorized
access to it. Therefore, network monitoring is widely adopted
between security engineers. There are manual traffic monitors
who keep an eye on network traffic to find any unusual activity
and stop it if they find it to be malicious. Another way to
monitor a network is by using automatic intrusion detection
systems (IDS) which look for exploits based on publicly
exposed vulnerabilities. Such IDSs are referred to as signature-
based IDSs. However, these techniques are futile against zero-
day attacks. These attacks take advantage of vulnerabilities
that have not been publicized yet and, therefore, the attack
signature has not yet configured into the IDS. These attacks
exploit flaws that can be on any level in the system’s archi-
tecture, and with the thriving technological advancement, it is
becoming even harder to keep track of vulnerabilities. Dean
et al. [4] developed a new approach to intrusion detection. By
satisfying constraints on several known protocols, the network
activity can be limited to only valid traffic. Here, the valid
traffic is the traffic satisfying a set of given constraints. This
IDS is powerful in limited networks where all the protocols
being used are known beforehand. The constrained-based IDS
consists of 3 main modules: Scanner, Parser and Constraint
Engine.

Constraint
Checker

Scanner Parser N

Fig. 1: Modules of the Intrusion Detection Framework

The existing constrained-based IDS currently supports four
protocols (ARP, NTP, RTPS and IGMP). This limits the
working scope of the IDS to networks operating with those
protocols only. In this paper, we propose the adaptation of two
other protocols, Network File System (NFS) [13] and Trivial
File Transfer Protocol (TFTP) [16]. Our work will be specific
to the generation of the parser for these new protocols.

ElShakankiry developed a parser generator [14] that ac-
cepts SCL (Structural and Context-sensitive Language) [10]
definitions, a format for modeling a protocol and its con-
straints, to generate a secure parser in C language. Writing
protocol parsers manually can be inefficient and produce low-
performing or vulnerable code which may create a bottleneck
in the network or introduce unwanted exploits. On the other
hand, parsers which are automatically generated have high
throughput and are secure. In this paper, we will develop the
SCL representation of the NFS and TFTP protocol.

This paper is organized as follows: Section II goes over the
background knowledge required to understand some of the
paper’s fundamental concepts. section III states the research
plan and section IV talks about what related work is done by
other researchers. Sections V and VI explain our experiment
setup and implementation. Section VII specifies our research
questions and what results were found for each question. We
state what threats might affect the validity of our results in
section VIII. At the end of the paper, we propose potential
future work and a conclusion in sections IX and X respectively.

II. BACKGROUND
A. SCL Language

The Structure and Context-Sensitive language (SCL),
ASN.1[6] with a XML-like extension, was created to add
to the ASN.1 description a more specific application-level
description of a protocol. This allows a researcher to represent

L

SCL Protocol Data Header
- Structure .
Specifications . Files
Generation 1
y - _ﬁ
Uniquely Named Callback LL(1) —
Specifications Annotation Optimization Parser Generated
Generation Parsers |

Fig. 2: Parser generation flow chart[9]

Analyze Modify TXL Test and Requirements Sun:ggﬁze
Parser Parser » Evaluate Satisfied Conclude
Generator Generator
1
Analyze
TFTP and Define
NFS —» protocolsin | <
protocols SCL

Fig. 3: Research Workflow

a protocol in a high-level abstract which is closer to the actual
protocol. Thus, SCL is a great fit in our IDS system for
protocol description.

B. TXL Programming Language

TXL is a powerful functional programming language used
for software analysis and source transformation. It has been
used for more than 15 years in industry, rapidly solving com-
plicated computer difficulties such as the year 2000 problem
[2]. A TXL software is made up of two main components,
the source language description and the transformation rules.
ElShakankiry et al. [14] used TXL to write the parser generator
which converts SCL description into C code.

C. Protcol Parser Generation

ElShakankiry used TXL for the core of the parser generator
due to its powerful source to source transformation capabili-
ties. The input for the parser generator is the SCL description
of that protocol. The SCL file is manually written through
analyzing captured protocol packets. This process is described
in figure 2. First, the SCL file is converted to an SCL file with
added markups before the actual generation of the parser. The
new SCL file also has globally unique attribute naming which
is done by appending the name of the protocol to the beginning
of the names. After markup, the SCL is transformed to the C
code of the parser. Two C files are generated for each SCL
file, one is a header file and the other is C source code. The
former is used to hold C structs to be used by the generator
while the latter is the actual parser.

D. NFS (Network File System)

The network file system protocol[13], developed by Sun
Microsystems, allows different machines to remotely share
files across networks. This protocol has cross-platform support
due to the fact that it is built over the Remote Procedure
Call protocol (RPC)[17] which highly supports portability. The
latest version of NFS is version 4, although it is not the most
popular. The most popular versions of the protocol are 2 and
3. Version 2 and 3 of NFS use UDP as a transport protocol
while version 4 uses TCP as a transport protocol. We mainly
focus on the latest version of NFS in our work.

E. TFTP (Trivial File Transfer Protocol)

TFTP [16] is basic protocol used to transfer files between a
server and a client. One of the primary uses of TFTP was in
booting a computer in a network where the operating system
is stored on a separate file sharing server. This protocol is
implemented on top of the UDP protocol. TFTP has only 2
features which are read from and write to files on a server. Due
to its simple implementation it lacks many advanced features
like list, delete or rename.

III. RESEARCH PLAN

Figure 3 summarizes our approach. A lot of work has been
done on the IDS and it is very time consuming to analyze the
whole system. Therefore, the proposed approach was to have
a general understanding of the whole system and a thorough
understanding of the parts of the system that are specific to
the parser generator.

A. Analyze and understand current parser generator module

To be able to add a new feature to the current system, first
we have to fully understand how the system is running and
study the language it was written in. In this case, the protocol
structure is defined in SCL and the parser generator is written
in TXL [2].

B. Analyze and study the NFS and TFTP protocols

The SCL must represent the protocols effectively, therefore,
the protocols should be thoroughly studied and understood
first. Reference to the protocol documentation will be made.
However, the main resource for our description will be actual
captured packets. Using Wireshark, the captured NFS and
TFTP packet structures will be analyzed. This is important
because usually the implementation of a protocol in industry
is different from what the documentation states. Any missing
protocol attributes will be discovered in the validation phase.

C. Designing and implementing the new parser

Now we are ready to design the new SCL structure and
modify the TXL parser generator. The new parser should
be integrated into the system for the work to be considered
productive. Plus the final product must achieve multiple goals
which are discussed further in the next step. Figure 4 shows a
snippet from the SCL description of NFS which will be used
to generate the parser. Note that we included a minor sample
of the code because it is too lengthy to be included entirely.

D. Evaluating and Testing

The current parser generator is robust and secure and it
should remain this way after the addition of the 2 new
protocols to the parser generator. Syntax and semantic errors
are expected in this phase. Syntax errors will appear in the
generation of the parser, the parser will not be generated as
long as the syntax errors exist in our code. As for semantic
errors, they can be identified by testing out the parser on real
NFS and TFTP packets. The new parser is acceptable if it
achieves the following standards, these standards were defined
by ElShakankiry et al. [14]

1) Performance: The generated parser must maintain an
average processing speed of 1 GBits per second which is the
average speed of intranets. In addition, speed is a crucial aspect
here since the faster the IDS operates, the more damage can
be avoided in case of an intrusion.

2) Reliability: Since the parser is automatically generated,
it contains all required memory checks. In addition, we must
ensure that the parser does not produce any false results in
any possible situation. This can be validated through thorough
testing of the parser on captured packets. Two well-known
metrics will be used to evaluate how reliable our new parser
is, these are precision and recall:

RelevantDetected Packets
DetectedPackets 100

precision =

RelevantDetectedPackets
RelevantPackets *+ 100

recall =

1 fattr ::= SEQUENCE {

2 type ftype (SIZE DEFINED),

3 mode INTEGER (SIZE 2 BYTES),

4 nlink INTEGER (SIZE 2 BYTES),

5 uid INTEGER (SIZE 2 BYTES),

6 gid INTEGER (SIZE 2 BYTES),

7 size INTEGER (SIZE 2 BYTES),

8 blocksize INTEGER (SIZE 2 BYTES),

9 rdev INTEGER (SIZE 2 BYTES),

10 blocks INTEGER (SIZE 2 BYTES),

11 fsid INTEGER (SIZE 2 BYTES),

12 fileid INTEGER (SIZE 2 BYTES),

13 atime timeval (SIZE DEFINED),

14 mtime timeval (SIZE DEFINED),

15 ctime timeval (SIZE DEFINED)

16 }

17

18 sattr ::= SEQUENCE {

19 mode INTEGER (SIZE 2 BYTES),

20 uid INTEGER (SIZE 2 BYTES),

21 gid INTEGER (SIZE 2 BYTES),

22 size INTEGER (SIZE 2 BYTES),

23 atime timeval (SIZE DEFINED),

24 mtime timeval (SIZE DEFINED)

25 }

26

27 attrstat ::= SEQUENCE {

28 attributes fattr (SIZE DEFINED)
29 }

30

31 diropargs ::= SEQUENCE {

32 dir fhandle (SIZE DEFINED),

33 name OCTET STRING (SIZE 255 BYTES)
34 }

35

36 diropres ::= SEQUENCE {

37 file fhandle (SIZE DEFINED),
38 attributes fattr (SIZE DEFINED)
39 }

Fig. 4: NFS description in SCL snippet

3) Security: Modifications of the current parser generator
may introduce new security threats on the system. We must
verify that our alterations are secure and abide to healthy
security practices.

4) Usability: The original parser is modular and easy to
operate and. We have to maintain these attributes to not disrupt
the workflow of the original system.

The parser generator will be tested with pre-captured pack-
ets involving TFTP and NFS protocols. False positives and
detection failures during testing will be indications to modify
the definition of the protocols in the SCL structure.

IV. RELATED WORK

Many researchers adopted the fields of protocol parsing and
intrusion detection. We here discuss some of the papers that
we found to be relevant to our work.

A. Building High-performance Application Protocol Parsers
on Multi-core Architectures

Protocol parsing is an essential step in analyzing network
traffic, and with the never-ending avalanche of new appli-
cations and services, more throughput is required by these
parsers to not slow down networks. This paper[21] discusses
a way to make use of parallel processing in CPUs to increase
the speed of network parsers. As a case study, the paper
uses source-to-souce transformation to transform parser code
generated by FLEX into code that supports parallel processing
by exploiting lock-free design principles. Our work consists
of source-to-source transformation and parser generation but
this paper goes an extra step to provide multi-core parser
processing. This significantly increases the parsing speed.
According to the paper, they were able to achieve 20 Gbps
parsing speed on average HTTP packets which is 20 times
faster than our parser.

B. Deep Grammar Optimization for Submessage Structure of
Network Protocol Parsers

Lavorato et al. [9] introduced a new method to optimize the
parsing of the traffic of the industry standard RTPS network
protocol. A RTPS message is composed of a RTPS header with
a set of sub-messages. Each sub-message has a distinguishable
type which needs to be parsed in a specific way. Initially, the
generated parser iterated through all of the RTPS message
types to match the sub-message type with its corresponding
identification and then handle the sub-message from there.
Kyle proposed a different approach, he added a unique markup
in the SCL definition of the protocol to identify the sub-
message type so that each sub-message type has its own
distinct callback function. This increased the overall speed of
the parser by 7.66% and the full IDS system by 5.60%. It is
similar to our work as it is working on improving the system
they were focused on optimization of current features while
our work will introduce a new feature.

C. Development and Testing of an Intrusion Detection System
for Unmanned Aerial Systems

This paper[12] proposes a new intrusion detection system
which is used in critical systems such as unmanned aerial
systems and unmanned aerial vehicles. The unique aspect in
this system is that it uses automated training based on the
blackboard architecture[5] to develop its data set and based on
this data, it can distinguish legitimate packets from tampered
ones. The use of an Al system can be very efficient, especially
with the rapid development of new application protocols.
Many new protocols are being introduced every other week
and it can be overwhelming to manually code them into
intrusion detection systems, therefore, automating this can be
very helpful. Another benefit is that this method minimizes
errors since it reduces the human factor. At the same time,
we run a security risk as attackers will try to find defects
in the training algorithm and exploit them. In our work, our
parsers are automatically generated by TXL, but the input is
a manually written SCL file which represents the structure of
a designated protocol.

D. Privacy preservation intrusion detection technique for
SCADA systems

Supervisory control and data acquisition (SCADA) systems
monitor and control critical industrial infrastructure utilities
such as gas, traffic and electricity. This paper [8] discusses a
new intrusion detection system using the correlation coefficient
EM clustering techniques. This technique classifies SCADA
data into normal and abnormal activities. The proposed IDS
here is to be used in critical systems which is the case
of our IDS. However, their work is mainly focused on the
SCADA systems while our IDS can be used in any network
environment. Another difference is that the SCADA IDS
categorizes intrusions based on previous training data while
our IDS works on preset rules and criteria to evaluate network
activities.

V. EXPERIMENT SETUP

Writing protocol descriptions in SCL is a trial and error
process that requires both the protocol’s documentation and a
sample packet capture of that protocol. We will focus more
on the latter in our work since the actual implementation of
the protocol differs from its initial documentation as vendors
implementing the protocol tend to modify it in a way to meet
their requirements and this can be revealed only by inspecting
the packets generated by the protocol.

Protocol documentations were found online[13][16]. For the
NFS and TFTP traffic, the only resources found online were
300 packets of NFS and 200 packets of the TFTP protocol.
These resources allowed us to start developing the structures
of the protocols in SCL but they were not enough for our
research. To solve this, we had to implement the protocols in
a controlled environment to allow custom generation of the
protocol traffic.

Random NFS traffic

NFS server NFS client

Packet

Capture

NES packet

dump

Fig. 7: NFS traffic generation setup

Our setup is represented in figure 7. An NFS server was
setup on a machine running CentOS 6.9 [19]. We connected
an NFS client, running Ubuntu 17.10[20], to the server and
wrote a script using the bash[3] language to simulate NFS
traffic. Finally, tcpdump[18] was used on the Ubuntu machine
to capture these packets. These captured packets were used to
progress the development of our SCL implementation of NFS.

RPCCALL ::= SEQUENCE {
fragmentheader INTEGER (SIZE 4 BYTES),
XID INTEGER (SIZE 4 BYTES),
messageType INTEGER (SIZE 4 BYTES),
rpcversion INTEGER (SIZE 4 BYTES),
program INTEGER (SIZE 4 BYTES),
programVersion INTEGER (SIZE 4 BYTES),
procedureName INTEGER (SIZE 4 BYTES),
credenitails longidentifier (SIZE DEFINED),
verifier identifier (SIZE DEFINED),

}

<transfer>
Back {messageType == 0}

</transfer>

RPCREPLY ::= SEQUENCE {
fragmentheader INTEGER (SIZE 4 BYTES),
XID INTEGER (SIZE 4 BYTES),
messageType INTEGER (SIZE 4 BYTES),
replystate INTEGER (SIZE 4 BYTES),
verifier identifier (SIZE DEFINED),
acceptState INTEGER (SIZE 4 BYTES),

}

<transfer>

Back {messageType == 1}

</transfer>

Fig. 5: Side by side comparison of RPC implementations in SCL

As for TFTP, we were not able to use the same system as the
Ubuntu machine was not able to establish a TFTP connection
to the TFTP server running on our CentOS. To save time, we
modified our environment by replacing the Ubuntu machine
with a machine running Windows 7 Professional [11]. On the
windows machine, we ran a TFTP server by Solarwinds [15]
and we connected to this server from our CentOS machine.
The connection was successful and we started transferring
large files to and from the TFTP server while also capturing
the network traffic using tcpdump. The captured packets were
used to further progress our SCL implementations.

As mentioned earlier, the SCL implementations of the
protocols are the input files for the TXL parser generator. This
parser generator will generate two C files for each protocol.
The first generated file is a header file holding the data
structure of the protocol and the second generated file contains
the main parsing functions. After generating these 2 files, they
are copied to the folder which contains the rest of the source
files of the IDS system to be compiled. The system is compiled

Client

System call layer

v

Virtual file system
{VFS) layer

v v

Local file]
system interface NFS client

v v

RPC client

] l

stub
[

.

as a whole and the system’s parser, integrated with the new
protocols, is generated. This parser is then tested against our
generated traffic of each protocol and according to the results,
we modify our initial SCL files. This process is repeated until
the required accuracy is achieved. To speed up this process, we
wrote a bash script that executes the TXL script to generate
the C code parsers, copies these parsers to the rest of the
project and compiles it then runs the final IDS parser against
our testing packets and displays the results.

VI. IMPLEMENTATION

The NFS protocol has a complex structure since it is built on
top of another protocol, the remote procedure protocol (RPC)
[17]. RPC is an application-layer protocol that allows a process
to request a service from another process running on a different
machine. It operates synchronously between a client and a
server, therefore, for every remote call there must be a reply.
To understand the NFS protocol we must fully understand RPC
first. A side by side comparison of the two RPC phases (RPC

Server

System call layer

v

Virtual file system

(VFS) layer
A v
Local file
NFS server system interface

stub
A

+

~/

Network

Fig. 6: NFS architecture [1]

CALL AND RPC REPLY) implemented in SCL is shown in
figure 5

We will first address the CALL phase of RPC. In this phase,
the structure of the protocol consists of 9 different attributes
of varying memory sizes but most of them are 4 Bytes. The
most important attributes to understand are the MessageType
and the ProcedureName attributes. With both being the size
of 4 Bytes, the former specifies whether the RPC message is
a CALL or a REPLY. A value of 0 for MessageType specifies
that this is a CALL message while a value 1 specifies a
REPLY. As for the ProcedureName attribute, its value specifies
what NFS procedure should be executed on the remote host.
The protocol defines 40 different procedures, however, we
are only interested in the ones that are adopted by NFS
implementations which will be revealed in our packet capture.
In our SCL implementation, we must specify a name and the
size of each attribute and any rules that should be associated
with this structure. For instance, for RPC-CALL, the attribute
MessageType should always be equal to 0.

As for the REPLY phase of RPC, we have 6 attributes
and most of which are the same from RPC-CALL. Both
RPC-CALL and RPC-REPLY have the MessageType attribute
which we discussed earlier, and the XID attribute which serves
as an identification for the RPC message. A difference here
would be that the MessageType must be equal to 1 for this to
be a RPC reply.

An abstract NFS architecture is represented in figure 6. A
NFS packet structure consists of 5 main fields, 2 of which
are of interest to us: The RPC field and the OPERATIONS
field. The RPC field is represented by a variable either of
type RPCCALL or RPCREPLY, both of which were described
earlier. As for the operations field, this defines a set of NFS
operations that each NFS packet is associated with. We found
9 different operations implemented for NFS (version 4) and
each with a call and a reply state, which makes a total of 18
operations. We write each operation’s structure in SCL and
associate it with a parent NFS packet.

TFTP has a less complex structure. The SCL code of NFS
consisted of 563 lines of code while the TFTP needed only
38 lines. There are 3 main message types of TFTP which are
the REQUEST, ACKNOWLEDGEMENT and DATA. The RE-
QUEST is the message that initiates a TFTP communication
while an ACKNOWLEDGEMENT message helps confirm the
receive of a TFTP message. As for the DATA messages they
transfer the DATA to or from a TFTP server with each packet
having a maximum of 512 Bytes of payload.

The implementation of the NFS protocol in SCL was more
complex than the TFTP protocol. Testing methods and results
are described later in the paper.

VII. RESEARCH QUESTIONS

To guarantee a successful research, we have to set some
questions that should be answered by the end of the research.
Any answer, whether positive or negative, is acceptable.

A. Is our new parser efficient enough to be used in real-time
networks?

The new parser generated must keep up with the average
bandwidth of the initial protocol parsers (ARP, RTPS, NTP
and IGMP) which is around 1 GBits per second. This is
a necessity to avoid creating a bottleneck in the system. In
addition, limited private networks have an average speed of 1
GBits per second so this speed must be achieved for the system
to be practical in a real-time environment. The speed will be
measured on the processing of pre-captured network traffic
files which represent the protocols described in the paper.
According to ElShakankiry, his parser generator generated
parsers with an average speed of 1185.78 MBits per second
[14] as shown in Table 1. Thus, our new parser is expected to
be in that speed range which satisfies our speed requirement.

To test this, we used our simulation environment described
earlier to generate enough traffic for our tests. We generated a
traffic dump of 2313081 NFS packets (1,000 Megabytes) and
a TFTP dump of 4956047 packets (1,610 Megabytes). We ran
the parser against each dump 10 times while measuring the
time taken each time. At the end, we computed the average
time taken by the parsers. All the tests were done on a machine
running on an Intel Core i7-3610QM CPU processing at 2.30
GHz. The results are show in table I and table II.

Time taken in seconds
NES Parser | TFTP Parser
Test 1 10.74 2.279
Test 2 3.666 8.037
Test 3 8.892 2.274
Test 4 8.929 1.802
Test 5 9.05 1.257
Test 6 8.892 8.265
Test 7 9.042 1.384
Test 8 1.852 2.738
Test 9 4783 8.389
Test 10 1.847 1.311
Average 6.769 3.774

TABLE I: Time taken by parsers

NFES Parser TFTP Parser
Size of traffic parsed | 1000906395 Bytes | 1610700997 Bytes
Average time take 6.769 s 3774 s
Average speed 1.183 Gbps 3.414 Gbps

TABLE II: Average speeds of parsers

First thing we noticed was the large variation in the time
taken by the parsers to complete parsing of the given traffic.
This is because of caching, the program is already in the
cache of the CPU when we run it a second and a third
time and therefore it will run much faster. To handle this,
we rebooted our system multiple times during testing and
then calculated the average of the total time taken by the
parser. To verify that the large variation is because of memory
caching, we investigated the correlation between the time
taken by the parser to complete its processing and the size
of cached memory. We used the program free to monitor the

Time Taken

—
o

Time Taken [s]
S = N W ke Oty N 0 ©
T

I S I A N B | I N
012345678 91011121314151617181920
Test Number

Fig. 8: Time taken for each test

Cached Memory Size

17600 T T T T T T T T T T T T T T T T T T T
1,400 |- y
= 1,200 |-
M
— 1,000 |
5]
5 800| .
=
S 600 i
=
]
O 400 | N
200 | .
0

| | | | | | | | | | | | | | | | | | |
012345678 91011121314151617181920
Test Number

Fig. 9: Size of memory cached for each test

cached memory while we did more speed tests. The results
are presented in the figures 8 and 9.

It is evident that the cache size and the speed of parsing
are inversely proportional. In the first test, we see that the
parsing time is 8.7 seconds and the cache size is 428 KB.
Then there is a sharp decrease in parsing time in test 2, when
at the same time, we witness a sharp increase in cache size.
This 1.8 seconds parsing time with a cache of 1,460 KB is
maintained from test 2 until test 10. After test 10, we did a soft
reboot of the system to see if there is a change in readings.
We notice an increase in parsing time (1.8s to 3.33s) and a
large decrease in cache size (1,460 KB to 427 KB). The test
right after that (Test 12) shows that the parsing time is back
down to 1.8s when the cache goes up to 1,460 KB again. After
that we did a hard reboot (A full shutdown before powering

up again) and we got a parsing time of 8.8 seconds with a
cache of 430 KB. More reboots were done in later tests and
the same pattern was observed. This shows us that the cached
memory is highly affecting the speed of our parser.

The average speed of the NFS parser was 1.183 Gbps
while the average speed of the TFTP parser was 3.414 Gbps.
This variation in the speed of the protocols is expected as
the structure of the NFS protocol is more complex than the
structure of the TFTP protocol. As mentioned earlier, the SCL
description of the NFS structure was 563 lines long while the
TFTP one was only 38 lines.

The results for efficiency met with our requirements of 1
Gbps and thus we consider that the parsers are efficient enough
to be used locally in limited networks.

B. How reliable is our new parser?

For the work to be determined successful, parsers should
have at least 95% precision and recall. Anything lower than
95% will be considered too low because the system is an IDS
and it is meant to be used in critical scenarios where errors
are not tolerable.

We calculate the accuracy and recall using the equations
mentioned earlier in the paper. Our results are displayed in
table III.

NES Parser TFTP Parser
Total Packets 2313081 4956047
Detected Packets 2110746 4956024
Relevant Packets 2109023 4956047
Relevant Detected Packets 2109023 4956024
Accuracy 99.92 % 100%
Recall 100 % 99.99 %

TABLE III: Precision and Recall of our parsers

These results show that our protocol description was precise.
We were able to achieve 99.92% accuracy and 100% recall
for the NFS parser and as for the TFTP parser we got
100% accuracy and 99.99% recall. These results meet our
initially stated requirements and therefore are determined to
be successful.

C. How does our newly integrated protocols affect the parsing
of the other protocols?

Our ultimate goal is to improve the overall system, there-
fore we do not want our integration to negatively affect the
performance of the protocol parsing, especially when all the
protocol parsers are running coherently. The speed of parsing
will be measured before our protocol integration and after. A
maximum of 5% speed decrease is tolerable, a result above this
limit will indicate that our integration had a negative impact
on the system.

This test was carried out on RTPS. The time required to
parse the traffic samples and the accuracy of the parsing was

the same before and after the addition of our new protocols.
The results of this test when done on parsing 11,612 RTPS
packets are displayed in table IV. To measure accuracy, we
calculated what percentage of the packets provided to the
parser were parsed. As for the processing time, we coded in
a built-in timer in the parser and it showed us the processing
time for each test. The parsing time taken was measured 10
times before and 10 times after augmenting the NFS and TFTP
protocols.

Time taken in seconds
Before Augmenting | After Augmenting
Test 1 0.0276 0.0138
Test 2 0.0257 0.0241
Test 3 0.0296 0.0291
Test 4 0.0285 0.0264
Test 5 0.0282 0.0289
Test 6 0.0228 0.0237
Test 7 0.0291 0.0278
Test 8 0.0241 0.030
Test 9 0.0263 0.0277
Test 10 0.0256 0.030
Average 0.0267 0.0261

TABLE IV: Parsing time test on RTPS packets

The average change in processing time after adding our new
protocols was -0.0224%, which indicates a very minor speed
increase that can be considered benign. This is definitely a
successful outcome of our work as the initial performance was
not negatively affected.

VIII. THREATS TO VALIDITY

Any research is prone to errors and validity threats, and
our work is no different. There are certain issues that may
invalidate some of our findings.

The NFS protocol is very complex, and thus, different
implementations may slightly vary parts of the protocol’s
structure. In addition, the simulation that we deployed may
be biased and not include all the possible NFS procedures
and forms which, in turn, can affect our parser’s accuracy
test. To solve this, our data set should contain samples from
different sources to increase our scope. The same reasoning
can be applied to the TFTP protocol.

During testing the speed of the parser, the results were
highly affected by caching. We tried to minimize this by
rebooting our system between tests. This method does not fully
diminish our problem, especially since we are running these
machines in virtual environments. A better approach would be
to run a cache clearing program between every two tests.

IX. FUTURE WORK

Our work is the first step towards fully augmenting the NSF
and TFTP protocols in the IDS. We still need to edit the
constraint engine to include the constraints related to these
protocols to fully complete the integration of these protocols
in the system.

New methods and optimization techniques must be devel-
oped to further increase the efficiency of protocol parsing. The
speed is acceptable right now but in the near future it will be
too slow and it will not be able to keep up with the network
speed and thus it will cause a bottleneck in the network. Our
consideration should not be limited to the parsing speed as
there is also the speed of evaluation of the packets that should
be accounted for. A solution for this can be implementing
parallel processing in our code, this was proven to be highly
effective. Parallel processing in parsers was able to achieve
speeds of 20 Gbps [21].

A new way can be developed to improve the addition of
new protocols. We can use artificial intelligence algorithms to
fully automate augmenting new parsers using sets of training
data[12]. This will improve the system’s efficiency and help
it adapt to the rapidly changing technologies. However, such
methods need to be thoroughly studied before implementing
in the system to ensure we do not introduce new security risks.

X. CONCLUSION

In this paper we introduce two new protocols to the
constrained-based IDS. It describes the effort required to
integrate new protocols to the parser generation module of the
IDS. More work needs to be done in order for the protocols
to be fully integrated in the IDS. A lot of work went into
the system and to introduce new protocol adaptations we
have to work module by module and maintain the overall
system stability. The IDS has been proven effective in limited
networks and has been field-tested in an air traffic control
system where the protocols used are restricted to the ones
mentioned in this paper[7] .

One thing to note is that the IDS has decent documen-
tation that can be further improved. Augmenting the two
new protocols very time consuming. Re-factoring and further
documenting the code will allow faster progress for future
developers.

REFERENCES

[1] San Bernardino (CSUSB) California State University. Nfs architecture.
http://cse.csusb.edu/tongyu/courses/cs660/notes/dresource.php.

[2] James R. Cordy. The txl source transformation language. Science of
Computer Programming, 61(3):190 — 210, 2006. Special Issue on The
Fourth Workshop on Language Descriptions, Tools, and Applications
(LDTA °04).

[3] GNU. Bash - gnu project -
https://www.gnu.org/software/bash/.

[4] M. S. Hasan, A. ElShakankiry, T. Dean, and M. Zulkernine. Intrusion
detection in a private network by satisfying constraints. In 2016 14th
Annual Conference on Privacy, Security and Trust (PST), pages 623—
628, Dec 2016.

[5] Barbara Hayes-Roth. A blackboard architecture for control. Artif. Intell.,
26(3):251-321, August 1985.

[6] ITU. Abstract syntax notation one (asn.l): Specification of basic
notation., August 2015.

[71 M. Janicki and K. Strzecha. Comparation of java-dedicated parser
generators. In Mona Proceedings of the International Conference Mod-
ern Problems of Radio Engineering, Telecommunications and Computer
Science, 2004., pages 422-425, Feb 2004.

[8] M. Keshk, N. Moustafa, E. Sitnikova, and G. Creech. Privacy preserva-
tion intrusion detection technique for scada systems. In 2017 Military
Communications and Information Systems Conference (MilCIS), pages
1-6, Nov 2017.

free software foundation.

[9]
(10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

K. Lavorato and T. R. Dean. Deep grammar optimization for submessage
structure of network protocol parser. 2017.

S. Marquis, T. R. Dean, and S. Knight. Scl: a language for security
testing of network applications. In Proceedings of the 2005 conference
of the Centre for Advanced Studies on Collaborative Research, pages
155-164, October 2005.

Microsoft. Windows 7. https://www.microsoft.com/en-us/software-
download/windows7.

Robert Mitchell and Ing-Ray Chen. Specification based intrusion
detection for unmanned aircraft systems. In Proceedings of the First
ACM MobiHoc Workshop on Airborne Networks and Communications,
Airborne *12, pages 31-36, New York, NY, USA, 2012. ACM.

B. Nowicki. Nfs: Network file system protocol specification. RFC 1094,
DOI, https://www.rfc-editor.org/info/rfc1094, March 1989.

Ali El Shakankiry. Context sensitive and secure parser generation for
deep packet inspection of binary protocols, August 2017.

Solarwinds. Free tftp server. https://www.solarwinds.com/free-
tools/free-tftp-server.

K. Sollins. The tftp protocol (revision 2). RFC 1350, DOI,
https://www.rfceditor.org/info/rfc1350, July 1992.

Inc. Sun Microsystems. Remote procedure call protocol specification.
RFC 1057, DOI, https://tools.ietf.org/html/rfc1057, June 1988.
TCPDUMP/LIBCAP. Tcpdump/libpcap ~ public repository.
http://www.tcpdump.org/.

CentOS Team. Centos (community enterprise operating system).
https://www.centos.org/.

Ubuntu Team. The leading operating system for pcs, iot devices, servers
and the cloud — ubuntu. https://www.ubuntu.com/.

K. Zhang, J. Wang, B. Hua, and X. Tang. Building high-performance
application protocol parsers on multi-core architectures. In 2011 IEEE
17th International Conference on Parallel and Distributed Systems,
pages 188-195, Dec 2011.

