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ABSTRACT
In this paper, we present a parser generation framework for text-
based network protocols. A general ANTLR grammar is used to
parse the messages and isolate the key part of each message that dis-
tinguishes the message type. Once the category is identi�ed using
a regular expression, the application-speci�c part of the message
is parsed using an application speci�c subgrammar, we call this a
targeted parsing approach. We present a speci�cation language to
automatically generate our parsers. We create a Constraint Engine
prototype to demonstrate how we can use the parsers we generated
in an intrusion detection scenario.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
Intrusion detection systems (IDSs) play a crucial role in network
security. To e�ectively detect intrusions, an IDS has to read and
analyze network tra�c. Therefore, an important module of an
IDS is the parser that will parse the data found in network tra�c.
ElShakankiry et al. [1] worked on a parser to be used in an IDS.
The parser that ElShakankiry et al. developed works on binary
network protocols only. When it comes to IDSs, it is important to
be able to parse network tra�c running over text-based protocols.
We develop a framework that allows us to parse tra�c running
over any text-based network protocol. Then we pair our parsers
with a Constraint Engine to demonstrate how the parsers may be
applied in intrusion detection.

Our parsing approach is similar to ElShakankiry et al. [1]. They
use a formal language to model binary protocols such as RTPS [2].
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They generate a parser from the protocol model. Our approach
leverages the ANTLR parser [3] to parse text based protocols such
as HTTP [4] and SMTP [5].

Our contribution is a framework that categorizes messages and
then applies an application-speci�c parser to each message. These
application-speci�c parsers allow the extraction of elements of
interest in a protocol message. For example, when analyzing an
application that utilizes HTTP such as PhpBB [6], our approach
uses a general grammar to parse HTTP messages, and then a set of
PhpBB speci�c grammars to parse each of the distinct application
messages. We also provide a prototype of a Constraint Engine and
use it to show how the output of our generated parsers can be used
for intrusion detection.

We organize the paper as follows. Section 2 provides background
knowledge needed to follow the rest of this paper. Section 3 dis-
cusses the overall work�ow and parser architecture. In Section 4,
we evaluate our parser as a standalone application and as a part
of a system that contains a Constraint Engine. We present related
work in Section 5. We conclude this paper and discuss the scope of
our future work in Section 6.

2 BACKGROUND
Network engineers must detect network intrusions before any dam-
age happens. Hasan et al. [7] developed an IDS targeted at limited
networks. Such networks have a limited number of protocols that
are running between their hosts. Hasan et al. took advantage of
this property to detect intrusions. They were able to de�ne the
normal behavior of a network and detect anomalies by evaluating
constraints. A constraint-based IDS [7] is feasible in limited com-
puter networks since the network engineers are familiar with all
the protocols. Examples of limited computer networks are low-risk,
high-pro�le networks such as Air Tra�c Control and Industrial
Control networks. This approach is less feasible for computer net-
works connected to the internet where the network protocols are
unpredictable. In these dynamic networks, a signature-based IDS [8]
is more feasible. These systems detect intrusions by looking for
signatures of attacks that have been previously discovered and pub-
licized. A constraint-based IDS in such scenarios will generate false
positives, defeating the purpose of an IDS.

The IDS developed by Hasan et al. in its current state only sup-
ports binary protocols such as the RTPS [2] protocol. The IDS needs
to support text-based protocols to detect intrusions at the applica-
tion level. An example application would be a network monitoring
tool that runs on a browser and communicates with its server via
HTTP. Applications built on top of text-based protocols represent
a threat vector which intruders may manipulate.
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sql_query=DELETE+FROM+%60docu
ments%60+WHERE+%60ID%60%3D
123&token=5f6ffd67ddf8603bd2ce961
8819b0a65&server=1&_nocache=1557
26393150879641

Parser outputinput

main
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sql_query= sql_command

DELETE

+

…

sql_command
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…

Callback function

if (sql_command.string == “DELETE”) {
alert()

}

Constraint Engine

HTTP Payload

Figure 1: Parsing and Constraint Check Example.

2.1 Example Attacks
Stuxnet [9] was able to breach into the air-gapped network of a nu-
clear facility in Iran. It was able to hop between di�erent computer
networks and USB drives until it infected the USB drive of one
of the workers of the targeted nuclear facility. Once Stuxnet was
inside the facility’s computer network, it attacked programmable
logic controllers (PLCs) that controlled the uranium-enriching cen-
trifuges. It then proceeded to overload those centrifuges. At the
same time, Stuxnet deceived the employees of the facility by modi-
fying their monitoring system to show that there were no problems
with the centrifuges.

What made Stuxnet so e�ective is that it used four zero-day vul-
nerabilities. A zero-day vulnerability is a vulnerability in a software
that has not been discovered and published and therefore, there
is no patch or �x for it. Stuxnet made use of zero-day vulnerabili-
ties to traverse networks and remain undetected long enough to
reach its target and execute its malicious payload. After Stuxnet,
more worms targeting limited networks appeared such as Duqu,
Gauss and Flame [10]. Zero-day attacks can not be detected with a
signature-based IDS but may be detected with a constraint-based
IDS.

2.2 Use Case Scenario
Consider the following use case with phpMyAdmin [11]. phpMyAd-
min is a database management platform allowing users to interact
with multiple databases and execute queries on them. A malicious
user may tamper with a database through phpMyAdmin by using
SQL [12] ALTER or DELETE statements. Listing 1 is an example of
a typical HTTP message from a client to the phpMyAdmin server
embedding SQL query statements.

1 POST /phpmyadmin/lint.php HTTP/1.1
2 Host: 127.0.0.1
3 Accept -Language: en-US,en;q=0.5
4 Accept -Encoding: gzip , deflate
5 X-Requested -With: XMLHttpRequest

6 Content -Length: 135
7 Connection: keep -alive
8 More HTTP headers...
9 sql_query=DELETE+FROM+%60documents
10 %60+WHERE+%60ID%60%3D123&token=5f6
11 ffd67ddf8603bd2ce9618819b0a65&serv
12 er=1&_nocache=1557263931508796416

Listing 1: phpMyAdmin Query Request.

The SQL statements in the payload of the HTTP element is not in
an intuitive format. Another problem is that not all HTTP messages
going through the network are phpMyAdmin tra�c. Some may
even contain di�erent application data that we need to parse with
a di�erent custom parser. To handle those cases, we developed
an approach that supports message categorization and targeted
parsing.

To categorize a message, we �rst parse the message with a
generic protocol parser. We use the generic parser to identify one or
more elements within the message that distinguishes that message
from other messages on the network. The elements are matched
to regular expressions to determine the category of the message.
The message element containing the application data is then ex-
tracted and labeled by its category. We parse the extracted data
with a parser speci�c to the message’s category. In the example,
we match the URL on line 1 of Listing 1 to the regular expression:
�.*lint\\.php�. If the regular expression matches the URL, we
proceed to parse the message body (lines 9 to 12) with a parser
speci�c to that message body format. The speci�c parser can extract
the query values we are interested in.

After we parse the application data, we can check for constraints
on that data. A constraint is any restriction or limitation we specify
on application data. In our example, one of the constraints could be
that none of the queries should be an ALTER or DELETE statement.
Therefore, whenever we parse an SQL query, we should use a call-
back function that checks if the query starts with the words ALTER
or DELETE. Such a function is a part of our Constraint Engine.
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Figure 2: A High-Level Architecture of the IDS Framework.

The Constraint Engine veri�es a set of constraints on the parsed
application data. In case of a constraint violation, the Constraint
Engine raises an alert to the user. The format of the alert does not
matter to us at this point. We show this example in Figure 1.

Figure 1 shows the HTTP payload we extracted from the HTTP
request in Listing 1 and how it is parsed by our targeted parser. The
�rst command of the SQL statement triggers a callback function
from our Constraint Engine. The Constraint Engine compares the
string format of the SQL command to the DELETE string. In case
of a match, an alert function is called which alerts the user about
the usage of the DELETE query.

Thus, we can detect intrusions based on constraint violation. In
this paper, we focus on the parser module and discuss it in details.

2.3 The IDS Architecture
The parser that we developed serves as a critical component of a
constraint-based IDS. As depicted in Figure 2, the IDS framework
has three main modules: the TCP Stream Assembler, the Parser, and
the Constraint Engine.

TCP Stream Assembler. This is the �rst module of our system.
The input for this module is a PCAP �le containing the tra�c of
a limited network. We assemble the network data from the PCAP
�le into a TCP stream. We use Wireshark [13] to do this assembly
before sending the TCP messages to the parser. We are developing
our own TCP stream assembler using libtins [14], a C++ library by
Fontanini et al. libtins provides TCP assembling capabilities that
we can use in our project.

The Parser. The messages produced by the TCP Stream Assem-
bler are sent to the parser. The parser parses those data streams
and outputs the corresponding data structures for the constraint
engine to use. The Parser module represents the main contribution
of our work which is the focus of our next section. We leverage the
ANTLR parser [3] to parse text based protocols such as HTTP [4]
and SMTP [5].

Constraint Engine. The constraint engine receives two kinds
of inputs: a) the parser-extracted application data, and b) a set of
application-speci�c constraints. The ultimate goal of the constraint
engine is to evaluate the parsed data against their constraints and
logging any detected violations.

HTTP 
messages

Protocol 
Parser

Protocol  
Grammar

Application-
Specific 

Subgrammars
ANTLR

ANTLR

Sub 
Grammar 

Parsers

Message 
Categorization Regex
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Data

Figure 3: The Architecture of the Parsing Framework..

3 TARGETED PARSING FRAMEWORK
Figure 3 presents a high-level architecture of our framework. We
use the ANTLR parser generator [3] to develop our parsing frame-
work. ANTLR is a parser generator that can read, process, execute,
and translate both binary and text inputs. It can generate parsers
in Java, C++, and C#. Being reliable and e�cient, ANTLR is widely
used to build languages, tools, and frameworks in both academic
and industrial applications. Twitter [15], for example, uses ANTLR
to parse over 2 billion queries a day. All that ANTLR needs to gen-
erate a parser is a grammar �le written in an EBNF [16] format.
Our framework takes as input at least two ANTLR grammars: (1) a
generic grammar, and (2) application-speci�c grammars (subgram-
mars). We can have more than one subgrammar for more than one
category of messages.

The parser extracts application data from network protocol mes-
sages and sends them to the Constraint Engine. The same protocol
can represent data internally in di�erent formats. The data can
be represented in JSON, XML, HTML or any application-speci�c
format. Thus, we are unable to parse of all protocol messages with
one generic grammar. Instead, we split the parser into two main
phases: Message Categorization and Target-Speci�c Parsing. In this
section we discuss these two parsing phases.

3.1 Message Categorization
To categorize a message, we �rst parse the message with a generic
protocol parser, generated by themain grammar. This generic parser
generates a parse tree out of an input protocol message. Next, we
compare one or more nodes of the generated parse tree to regular
expressions. A matching regular expression identi�es the category
of the message. If no match was found, no further processing is
done on the protocol message. The message element in the gen-
eral parse tree that contains the application data is extracted and
labeled with the category to which it belongs. For example, if the
main grammar is HTTP, we parse an HTTP message using a parser
generated from a generic HTTP grammar. Using the resulting parse
tree, we compare the URI node (or possibly a mime header node)
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to a regular expression. The matching regular expression deter-
mines the category the HTTP message belongs to. We extract the
element containing the application data of that category. We end
up with categorized application data that is ready to be fed into the
Application-speci�c parsing phase.

3.2 Subgrammar Parsers
In this phase, we parse the categorized application data using a
parser generated from a grammar speci�c to that category. We refer
to the grammars in this phase as subgrammars. These subgrammars
are accurate enough to extract all the data that we need to send to
our constraint engine for evaluation. We use ANTLR and C++ to
generate the parsers. Figure 4 shows the message body after being
parsed by the main grammar. Figure 5 shows the message body
after being parsed by a target-speci�c subgrammar. In this phase,
the parser is domain-speci�c which allows e�ective extraction of
the application data that we are interested in. In our proposed
framework, the parser goes through the following steps:

(1) Categorize messages;
(2) Extract the application data element;
(3) Label the extracted data with their category;
(4) Parse the labeled data with category-speci�c parsers.
We created a generator that generates parsers that include all the

features mentioned above. We generate the parsers from a parser
speci�cations �le. We developed a parser speci�cation language
to facilitate the usage of the parser framework. The language was
developed to be simple enough for the network engineers to specify
their parsing needs. The language allows us to specify the following
aspects of the parser: the main grammar, message categories, the
regular expressions used for categorization, and any functions to
apply on the parsed data.

1 MainGrammar(HTTP , �HTTP�) {
2 # Main grammar scope
3 }
4 Category(LoginCategory) {
5 # Categorization of LoginCategory
6 Categorization(�url�,�.(.? mode=login)�)
7 # Specify the application data node
8 DataNode(�message_body�, �LoginHTTP�)
9 # Run functions
10 print(�LoginHTTP�,�username�)
11 print(�LoginHTTP�,�password�)
12 }

Listing 2: Message Category Speci�cation.

Main Grammar Speci�cation. To specify the main grammar,
we use the keyword called MainGrammar which requires two ar-
guments. The �rst argument is what the user chooses to call this
grammar so that they can refer to it later when specifying a set of
constraints for the constraint engine to use. Constraint speci�ca-
tion is part of our future work. The second argument is the name
of the ANTLR grammar �le that speci�es a particular grammar. We
can de�ne the main grammar in the speci�cation �le as shown
in line 1 of Listing 2. After the �rst line, we declare the scope of

MainGrammar using curly braces where we can specify di�erent
functions and attributes that refer to the main grammar.

Category Name. We specify a name for a message category.
We can use the keyword Category followed by the category name
written between parenthesis. Following that, we declare a scope for
the category using curly braces. Within the scope, all speci�cations
will refer to that category. Line 4 of Listing 2 is an example of a
category called the LoginCategory.

Categorization Attributes. In order to categorize a message,
we specify the message element that belongs to a particular cate-
gory. While the main grammar de�nes the message elements, we
also have to specify the regular expression that the parser will
compare to that element. We determine the category of a message
when a regular expression matches with a message element. To
specify a regular expression we use the keyword Categorization
as exempli�ed on line 6 of Listing 2.

Application Data Node. Another attribute to specify is the
element of the protocol message that we want to parse using a
speci�c parser. We use the keyword DataNode followed by two
arguments that specify the name of the message element and the
name of the parser’s grammar (e.g., line 8 of the Listing 2).

Node Functions. The speci�cation language allows us to apply
functions to the application data discovered by the targeted parser.
The purpose of these functions is to show that we have access to
the application-speci�c data. As an example, we implemented the
print function which prints out an element to the standard output.
Two arguments follow the print keyword, the name of the speci�c
grammar and the name of the element in that grammar that we
wish to print on the screen. This can be seen in Listing 2 on lines 10
and 11.

The example shown in Listing 2 refers to the categorization of
the Login request messages of a web application; i.e., messages that
belong to the Login category.We categorize the request bymatching
the url, extracted by the main grammar parser, to the regular
expression shown on line 3. We represent the regular expression
in C++ standards [17]. The main grammar contains an element
called message_body that we are interested in further parsing with
a subgrammar parser. We specify the subgrammar parsing on line 8.
The name LoginHTTP refers to the ANTLR grammar �le written
for this particular message category. Finally, we use the keyword
print on the username and passwordmessage elements to display
them on the screen.

4 EVALUATING THE PARSING FRAMEWORK
We generated a number of custom parsers using the parser spec-
i�cation language to test our framework. Each parser refers to a
particular application built on top of a text-based protocol. We apply
those parsers to the TCP streams generated from the application’s
network tra�c. In this section we discuss our evaluations on two
HTTP-based applications called the GraphDB and the PhpBB, and
for parsing email messages sent via SMTP.

4.1 Evaluation with GraphDB
GraphDB [18] is a web implementation of a graph database that
uses SPARQL [19] as its query language. The GraphDB interface
communicates with its server via HTTP, sending SPARQL queries
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Figure 4: Message body element from the Main Grammar parse tree.
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Figure 5: Message body element from the Subgrammar parse tree.

in the message body and receiving back a JSON object containing
the query results.

In order to parse GraphDB’s tra�c, we use an HTTP grammar in
ANTLR and speci�ed it as the main grammar. This main grammar
can parse HTTP headers and locate the message body. However, it is
unable to parse the message body as an HTTP message body can be
almost any arbitrary form or format. We wrote a SPARQL grammar
as a subgrammar for parsing the SPARQL queries embedded in
the HTTP requests. We also wrote a JSON grammar to handle the
server’s reply.

We show the speci�cation for the GraphDB parser in Listing 3.
We speci�ed that the categorization of the GraphDB requests that
contain SPARQL queries is done by matching the Accept Info
header of HTTP to the regular expression: �.*sparql-results\\+json.*�
on line 7. On line 15, we speci�ed that the categorization of the
query results messages is done by matching the Content Type
header to the expression: �.*sparql-results\\+json.*�. For
testing, we speci�ed in the parser speci�cation language to print
out the predicate of the SPARQL queries and to print out the JSON
values of the query results as seen on line 10 and 18.

1 MainGrammar(HTTP , �HTTP�) {
2 # Main grammar scope
3 }
4 Category(query , �query�) {

5 # Look for the SPARQL query requests
6 # to the server.
7 Categorization(�accept_info�, �.*sparql -

results \\+ json.*�)
8 DataNode(�message_body�, �SparqlHTTP�)
9 # testing
10 print(�SparqlHTTP�, �predicate�)
11 }
12 Category(result , �result�) {
13 # Look for the results of the SPARQL
14 # queries sent by the server
15 Categorization(�content_type�, �.*sparql -

results \\+ json.*�)
16 DataNode(�message_body�, �Json�)
17 # testing
18 print(�Json�, �json_value�)
19 }

Listing 3: GraphDB Parser Speci�cation.

To implement this parser, we need three ANTLR grammar �les,
one for the HTTP parser, one for the SPARQL parser and one for the
JSON parser. The SPARQL and JSON parser will parse the payload
of the HTTP grammar, which is in the message_body non-terminal.
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We show the ANTLR de�nition of the message_body non-terminal
below:

1 message_body: ~(( HTTPVERSION1_0 |
2 HTTPVERSION1_1))+;
3 HTTPVERSION1_0: �HTTP /1.0�;
4 HTTPVERSION1_1: �HTTP /1.1�;

The message body rule states that any character sequence that
is not equal to HTTP/1.0 or HTTP/1.1 is part of the message_body
non-terminal. The reason for this is that the HTTP messages are
sometimes aligned right after each other. Therefore, the parser
needs to keep parsing any character as a message body until we
reach a newmessagewhich starts with either HTTP/1.0 or HTTP/1.1.
We realize that this is not the optimal parsing rule for the message
body since HTTP/1.0 or HTTP/1.1 can still appear within a message
body, but for our test cases, it was su�cient. We do not show the
entire HTTP grammar due to limited space. Two other grammars
for SPARQL and JSON are used to parse the message_body nodes
from the HTTP tree. Listing 4 shows the SPARQL grammar.

main: QUERY EQUAL query;
query: prefix* dataset* result pattern

modifiers extensions;
prefix: PREFIX prefix_name COLON link;
prefix_name: ID;
link: LESSTHAN url MORETHAN;
url: http COLON FORWARDSLASH FORWARDSLASH

(ID | DOT | ENCODING | DASH |
UNDERSCORE | FORWARDSLASH | NUMBER)*;

http: HTTP | HTTPS;
dataset: FROM link;
result: action (ASTERISK | variables);
variables: variable +;
variable: QUESTION ID;
action: SELECT;
pattern: WHERE LBRACE condition+ RBRACE;
condition: subject predicate object DOT?;
subject: variable | entity;
predicate: variable | entity;
object: variable | entity | string;
string: DQUOTE .*? DQUOTE;
entity: ID COLON (ID | NUMBER);
modifiers: modifier;
modifier: limit;
limit: LIMIT NUMBER;
extensions: (AND extension)+;
extension: (ID | LIMIT) EQUAL (ID | NUMBER

);

Listing 4: SPARQL grammar.

We parse the message body of the Query category HTTP mes-
sages with the SPARQL grammar. Messages in the Result category,
are parased with the JSON grammar in Listing 5.

We installed GraphDB on a local machine and captured the
tra�c that involved database queries. Our generated parser was

able to categorize the messages and parse the SPARQL queries. The
output of our parser is shown in Listing 6. Line 2 of Listing 6 is the
predicate of the SPARQL query used as printed by line 10 of the
speci�cation in Listing 3. %3A is the HTML encoding for the colon
character giving the parsed predicate in the query as rdf:type. The
rest of the output in Listing 6 is generated by the print statement
on line 18 of the speci�cation. This line extracts the json_value
non-terminals from the JSON parse tree of the query results and
prints them. Since the json_value non-terminal is recursive, some
elements are printed more than once (e.g. [�s�] and �s� on lines
3, 4, 5).

main: json;
json: json_object | json_array;
json_object: LBRACE json_pair (COMMA

json_pair)* RBRACE | LBRACE RBRACE;
json_pair: STRING COLON json_value;
json_array: LBRACKET json_value (COMMA

json_value)* RBRACKET | LBRACKET
RBRACKET;

json_value: STRING | NUMBER | json_object
| json_array | TRUE | FALSE | NULLL;

Listing 5: JSON grammar.

1 Start of HTTP parser.
2 rdf%3Atype
3 {�vars �:[�s�]}
4 [�s�]
5 �s�
6 �uri�
7 �http :// purl.org/dc/elements /1.1/ title�
8 {�s�:{� type �:�uri�,�value �:� http :// purl.

org/dc/elements /1.1/ creator �}}
9 {�type �:�uri�,�value �:� http :// purl.org/dc/

elements /1.1/ creator �}
10 �uri�
11 �http :// purl.org/dc/elements /1.1/ creator�
12 End of HTTP parser.

Listing 6: GraphDB parsing output.

4.2 Evaluation with PhpBB
PhpBB [6] is an open source bulletin board web-platform used by
millions of users. It uses HTTP for client-server communication.
PhpBB includes features such as posting to forums, commenting
on posts, account registration, and admin management. These rep-
resent di�erent message categories in our targeted parsing frame-
work.

The main grammar is the same HTTP grammar used in the
GraphDB test. This shows the framework is modular and reusable.
Reuse of existing grammars allows focus on the application data sub-
grammars. We use new subgrammars to parse the PhpBB-speci�c
application data. In this example, subgrammars for four di�erent
message categories: user login, user logout, new user registration,
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and �le upload are used. Listing 7 shows the speci�cation for the
four message categories.

1 MainGrammar(HTTP , �HTTP�) {
2 # Main Grammar Scope
3 }
4 Category(Login , �Login�) {
5 Categorization(�uri�, �.*(\\. php\\? mode=

login)�)
6 DataNode(�message_body�, �LoginHTTP�)
7 print(�LoginHTTP�, �username�)
8 print(�LoginHTTP�, �password�)
9 }
10 Category(Logout , �Logout�) {
11 Categorization(�uri�, �.*(ucp \\.php\\?

mode=logout .*)�)
12 DataNode(�uri�, �LogoutHTTP�)
13 print(�LogoutHTTP�, �sid_value�)
14 }
15 Category(Upload , �Upload�) {
16 Categorization(�uri�, �.*( posting \\.php

\\? mode=post .*)�)
17 DataNode(�message_body�, �UploadHTTP�)
18 print(�UploadHTTP�, �filename_value�)
19 }
20 Category(Register , �Register�) {
21 Categorization(�uri�, �.*(ucp \\.php\\?

mode=register .*)�)
22 DataNode(�message_body�, �RegisterHTTP�)
23 print(�RegisterHTTP�, �email_value�)
24 }

Listing 7: Parser Speci�cations for PhpBB.

On line 2 we specify that the main grammar is HTTP. Each of the
four categories has its own unique categorization rule and data
node. The Login category includes all the HTTP messages that a
PhpBB client sends to login to the user account. Login messages
are categorized by matching the URI to the regular expression
.*(\\.php\\?mode\\login)� as speci�ed on line 6. The message
body node of a Login message is reparsed with the subgrammar
LoginHTTP on line 7. Lines 8 and 9 print out the username and
password non-terminals from the LoginHTTP subgrammar.

The categorization rule on line 11 of the speci�caiton states
that logout messages are identi�ed by matching the URI to the
regular expression �.*(ucp\\.php\\?mode=logout.*)�. Line 13
speci�es that the URI of the logout messages will be parsed with the
LogoutHTTP subgrammar. On line 14, the values of the sid_value
non-terminal are printed. Similarly, we specify the Upload and
Register categories on lines 16 to 25. The Upload category is the
category of messages that represent uploading a �le to the PhpBB
server. The Register category is the category of the messages that
register a new user in the PhpBB application.

Listing 8 shows the LoginHTTP subgrammar we used for the Lo-
gin category of PhpBB messages. On line 3 we de�ne the username
non-terminal that will contain the username that logged in. On

line 5 we de�ne the password non-terminal that will contain the
password of the account that logged in. Those non-terminals are
the ones that we refer to in our speci�cations �le on lines 8 and 9
in Listing 7.

1 main: username_line AND password_line AND
(( login_parm AND redirect) | (redirect
mode_param AND sid AND redirect AND

login_parm));
2 username_line: USERNAME EQUAL username;
3 username: (ID | HEX);
4 password_line: PASSWORD EQUAL password;
5 password: TEXT | (ID | HEX);
6 login_parm: LOGIN EQUAL login;
7 login: (ID | HEX);
8 redirect: REDIRECT;
9 mode_param: MODE EQUAL LOGIN;
10 sid: SID EQUAL HEX;

Listing 8: LoginHTTP Subgrammar for PhpBB.

Listing 9 shows the LogoutHTTP subgrammar that we used for
the Logout category of PhpBB messages. Here, we are interested in
�nding out the value of the session ID of the user that has logged
out. Line 6 de�nes the sid_value non-terminal that contains the
session ID of the user that has logged out. That is the same non-
terminal we refer to on line 14 in Listing 7.

1 main: uri QUESTION variable? (AND variable
)* AND? sid (AND variable)*;

2 uri: ~( QUESTION)+;
3 variable: ID EQUAL variable_value;
4 variable_value: value;
5 sid: SID sid_value;
6 sid_value: value;
7 value: ~(AND | EOF | NEWLINE)+;

Listing 9: Logout Subgrammar for PhpBB.

Similarly, we de�ne the subgrammars for the two other message
categories as shown in Listings 10 and 11. Note that some of the
grammar was ommitted for the sake of brevity.

main: NEWLINE? username AND email AND
password AND language AND tz_date AND
tz AND tz_copy AND confirm_code AND
confirm_id AND agreed AND change_lang
AND confirm_id AND submit AND
creation_time AND form_token NEWLINE ?;

username: USERNAME username_value;
username_value: ID;
email: EMAIL email_value;
email_value: ~(AND | NEWLINE)*;
password: NEW_PASSWORD new_password_value

AND CONFIRM_PASSWORD
confirm_password_value;

new_password_value: password_value;
confirm_password_value: password_value;
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password_value: ~( NEWLINE | AND)+;
language: LANGUAGE language_value;
language_value: ID;
tz_date: TZ_DATE utc_time PLUS MINUS PLUS

timezone PLUS MINUS PLUS date COMMA
PLUS a_time;

utc_time: UTC_NUMBER COLON NUMBER;
time: hours COLON minutes;
hours: NUMBER;
minutes: NUMBER;
timezone: ID FORWARDSLASH ID;
date: day PLUS month PLUS year;
agreed: AGREED bool_value;
bool_value: TRUE | FALSE;
change_language_value: NUMBER;
submit: SUBMIT ID;
creation_time: CREATION_TIME NUMBER;
form_token: FORM_TOKEN ID;

Listing 10: Register Subgramamr for PhpBB.

main: (row new_line ?)* content_type file;
content_type: �Content -Type:�

content_type_value;
content_type_value: ID;
row: row_value? new_line? MINUS* number

new_line content_disposition SEMICOLON
name (SEMICOLON filename)? new_line;

filename: �filename=� filename_value;
filename_value: STRING;
content_disposition: �Content -Disposition:

� content_disposition_value ;
content_disposition_value: ID;
name: �name=� name_value;
name_value: STRING;
number: NUMBER;
new_line: NEWLINE;
row_value: (~�\n�)+;
file: .+?;

Listing 11: Upload Subgrammar for PhpBB.

We generated a parser from a speci�cations �le and ran it against
captured PhpBB tra�c. The parser was able to recognize all four cat-
egories and printed out application-speci�c data such as usernames,
passwords, and session IDs.

4.3 Evaluation with Email Messages
Our framework can be applied to applications built on top of other
text-based protocols. We test the e�ectiveness of our targeted-
parsing framework on email messages sent via SMTP. To collect
SMTP tra�c, we set up a local email server (SquirrelMail v 1.4.22) on
an Ubuntu machine and created random user accounts. We started
sending emails and captured the network tra�c using Wireshark.
We wrote a basic SMTP grammar to be our main grammar. We

wrote a subgrammar that parses email messages found in SMTP
tra�c. To make things more interesting, we added a speci�c rule in
the email subgrammar that parses website links. Then we speci�ed
in our parser speci�cations �le to print out the sender and receiver
of the email message and all the web links in that message. We
present the SMTP main grammar in Listing 12. Listing 13 presents
the Email subgrammar and Listing 14 shows the speci�cations for
the SMTP parsing.

main: (message NEWLINE ?)*;
message: request | reply;
reply: reply_code .*? NEWLINE;
reply_code: NUMBER;
request: email NEWLINE | ID .*? NEWLINE;
email: email_header+ .*? NEWLINE+ DOT;
email_header: ID COLON .*? NEWLINE +;

Listing 12: SMTP Main Grammar.

main: headers content;
headers: (header NEWLINE)+;
header: date | to | from | reply_to |

subject | mime_version | content_type
| content_transfer_encoding |
extension_header;

extension_header: extension_name COLON (
extension_value NEWLINE)+? header ?;

extension_name: ID;
extension_value: ~( NEWLINE)+;
date: DATE COLON ~( NEWLINE)*;
to: TO COLON email | TO COLON ID LESSTHAN

email MORETHAN;
email: (ID | NUMBER | UNDERSCORE | DOT)*

AT host;
host: ID (DOT ID)*;
from: FROM COLON email | FROM COLON ID

LESSTHAN email MORETHAN;
reply_to: REPLYTO COLON email;
subject: SUBJECT COLON ~( NEWLINE)*;
mime_version: MIMEVERSION COLON

version_number;
version_number: NUMBER (DOT NUMBER)*;
content_type: CONTENTTYPE COLON ~( NEWLINE)

*;
content_transfer_encoding:

CONTENTTRANSFERENCODING COLON ~(
NEWLINE)*;

content: (link | .)+? NEWLINE DOT NEWLINE
?;

link: (HTTP | HTTPS)? (ID | NUMBER |
UNDERSCORE) ((DOT) (ID | NUMBER |
UNDERSCORE))+;

Listing 13: Email Subgrammar.
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1 MainGrammar(SMTP , �SMTP�) {
2 # Main Grammar Scope
3 }
4 Category(email , �email�) {
5 Categorization(�email�, �(.|\\n|\\r)*�)
6 DataNode(�email�, �EMAIL�)
7 print(�EMAIL�, �from�)
8 print(�EMAIL�, �to�)
9 print(�EMAIL�, �link�)
10 }

Listing 14: SMTP Parser Speci�cations.

Below we show the output from our parser after we ran it on
the SMTP tra�c.

Start of SMTP parser.
From:zoe@example.com
To:moe@localhost
http://example.com
End of SMTP parser.

Not only does it show an extracted link, but it also provides
who the message is from and who it is to. This example shows the
�exibility of the parser.

4.4 Evaluation with the Constraint Engine
After we tested our generated parser, moved on to evaluating the
application of our work in an intrusion detection scenario. We sent
the application data parsed by our parser to a Constraint Engine
prototype that we developed. We implemented two constraints in
our Constraint Engine for phpBB tra�c:

AC1: A login username’s characters must belong to a prede�ned
set of characters. This is an example of a single-message constraint.
A single-message constraint is a constraint that the Constraint
Engine evaluates by checking the contents of only one message.
We show AC1 in Figure 6.

To implement AC1, we include a character veri�cation func-
tion in the constraint engine module. This function takes as input
the set of valid characters and a string to verify. To integrate this
functionality in our parser, we make use of the callback functions
generated by ANTLR. The callback functions are functions that are
called when the parser reaches a non-terminal node. We added a
callback function on the parsed username. This callback function
calls the character veri�cation module in our Constraint Engine and
displays the output of the evaluation as shown in Figure 6. Our list
of allowed characters includes lower-case alphabets. Therefore, the
Constraint Engine reports the usage of character "3" as a violation.

AC2: A request to the server with a set session ID must only be
issued from a client IP address that logged in to that session ID. We
call this a multi-message constraint since the Constraint Engine
needs multiple messages to evaluate it. We show AC2 in Figure 7.

AC2 is important to detect session hijacking in a local network.
An attacker may extract a session ID from the network tra�c be-
tween a host and a server. Then, the attacker may use the session
ID to gain access to restricted information. AC2 makes sure that
network requests have not been hijacked by making sure that a
host sending a request with a set session ID has actually previously

logged in to that session. AC2 requires the Constraint Engine to
keep track of the IPs the login messages are from and the session
IDs used in HTTP requests.

In AC2, we use the categorization feature of our parser to cate-
gorize AC2 related messages into three di�erent categories: Login
messages, request messages and logout messages.

Login Messages: These are the messages used to log in to an
account. When the parser parses a Login message, the Constraint
Engine saves the Session ID (SID) and IP pair that has logged in. We
call the data structure used to save the SID-IP pair as the constraint
tree.

Request Messages: These are generic messages used to browse
through the phpBB website. When the parser parses a Request
message, the Constraint Engine looks up the SID-IP pair of the
request message to check if the pair has been previously saved by
the Constraint Engine.

Logout Messages: These are messages used to log out from an
account. When the parser parses a Logout message, the Constraint
Engine deletes the saved SID-IP pair.

We input to our parser a Login message, a Request message with
an SID that we manually modi�ed, and a Logout message. The
output of the Constraint Engine is shown in Figure 7. We received
a false positive at �rst, saying that an SID-IP pair was not found in
our constraint tree. This is because the �rst Login message itself
has a set SID that has not been previously saved. The Constraint
Engine then shows a true positive. It managed to detect that the
SID-IP pair of the Request message we sent has not been previously
logged in. We manually modi�ed the SID of the Request message
to test our constraint.

5 RELATEDWORK
The topic of parser generation for network protocols has been
discussed numerous times before. Every research done on parser
generation has its own merits. Our approach depends on island
grammars [20] [21]. An island grammar is a grammar that de�nes
portions of interest (the islands) that are present within message
elements that we are not interested in (the water). In comparison
to our work, the islands represent the subgrammars. The water
represents all the message elements we ignore. Deursen et al. and
Moonen use island grammars in reverse engineering to extract
elements from source code. Our work makes use of the island
grammar approach to extract application data from network tra�c.
We provide an interface for the user to use this approach at a higher
level of abstraction.

Borisov et al. [22] present a similar framework for protocol anal-
ysis. They describe a Generic Application-Level Protocol Analyzer
(GAPA) with its own speci�cations language (GAPAL). GAPA is
a powerful network analyzer that works for both binary and text-
based protocols. GAPA supports layering, a feature that acts as
separate instances of the GAPA engine that parses incoming pack-
ets at di�erent levels of abstraction. Borisov et al. used layering to
implement a targeted-parsing feature, similar to our framework.
However, GAPA does not categorize incoming messages. GAPA
sends an incoming message through its parsing layers regardless
of its context. In contrast, our framework classi�es incoming mes-
sages according to their elements, then parse each category with
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Parser

Login:
Username: moe3

POST /phpbb/login.php?db=test HTTP/1.1
Host: myserver.com
User-Agent: Mozilla/5.0 (X11; Ubuntu; 
Linux x86_64; rv:64.0) Gecko/20100101 
Firefox/64.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
X-Requested-With: XMLHttpRequest
Connection: keep-alive
…
username=moe3&password=myp@ssw0rd
&login=Login&redirect=.%2Findex.php%

Constraint Engine

Character 
Validation

Allowed 
Characters for 

Username
Login message

➢ Start of HTTP IDS.
➢ AC1 violation 

detected, invalid 
character(3) found in 
username: moe3

➢ End of HTTP IDS.
Output

Figure 6: Single Message Constraint Test.

Parser

Login:
Session ID: 
6f10678673cba64
IP: 192.168.1.2

POST /phpbb/login.php?db=test HTTP/1.1
Host: myserver.com
Session-Id: 6f10678673cba64
Accept-Language: en-US,en;q=0.5
…
username=moe&password=myp@ssw0rd&login
=Login&redirect=.%2Findex.php%

Constraint Engine

Lookup 
SID-IP

Request:
Session ID: 
6f10678673cba65
IP: 192.168.1.2

Login Message

GET /phpbb/home.php HTTP/1.1
Host: myserver.com
Session-Id: 6f10678673cba65
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
X-Requested-With: XMLHttpRequest
Connection: keep-alive
…

Request Message

Save 
SID-IP

Logout:
Session ID: 
6f10678673cba64
IP: 192.168.1.2

Delete
SID-IP

GET /phpbb/logout.php?sid=6f10678673cba64
HTTP/1.1
Host: myserver.com
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
X-Requested-With: XMLHttpRequest
Connection: keep-alive
…

Logout Message

➢ Start of HTTP IDS.
➢ AC2 violation detected, SID-IP 

pair bd624b361ff7f7c-
192.168.1.2 not found in 
constraint tree.

➢ violation detected, SID-IP pair 
6f10678673cba65-192.168.1.2 
not found in constraint tree.

➢ End of HTTP IDS.

Output

Figure 7: Multi-Message Constraint Test.

a speci�c parser.We use the popular and well-maintained ANTLR
parser generation framework while GAPA created their own.

Burgy et al. [23] present Zebu, an annotated form of Augmented
BNF (ABNF) [24] used to specify application data parsing of text-
based protocols such as HTTP. Annotations include application-
speci�c information such as the message element that contains ap-
plication data. The Zebu approach implements application-speci�c
parsing by modifying the ABNF grammar. In our work, we use
a modular approach to keep the grammar �les separate from the
parser speci�cation �les. Users can reuse existing grammars to
create custom parsers. Another advantage of modularity is that the
parser does not require signi�cant structural changes to update
with new subgrammars.

Wondracek et al. [25] show an automatic approach to generate
network protocol parsers. Their work supports parsing both bi-
nary and text-based protocols while our scope is only text-based

protocols. One of the key features of the parsing framework by
Wondracek et al. is that it supports auto-generation of the protocol-
speci�c grammars instead of manually writing them. For our pars-
ing framework, such a feature would be useful to avoid manual
e�orts of writing the ANTLR grammars by the domain experts.
The auto-generation feature would also eliminate human-induced
errors. This latter aspect is important since the accuracy of our
parsing is determined by the accuracy of the input ANTLR gram-
mars to our framework. The generated parsers by Wondracek et al.
were able to achieve 100% accuracy in some protocol analyses but
reached as low as 75% in others. A low parsing accuracy can lead
to unexpected behavior for an IDS application.

Van den Brink et al. [26] worked on a similar approach to assess
the quality of embedded SQL statements. To assess the quality of
the SQL, they had to extract the SQL queries from source code
�rst. They address two forms of embedded SQL statements: SQL
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statements in blocks of code and SQL statements assembled from
distinct elements. Listing 15 provides an example of the latter case
where the SQL statements are separated by string concatenation
operations in Java.

Although our parser can distinguish the SQL statements from
Java, it will only present the SQL as distinct message elements that
can be reconstructed later on in C++ for example. We assume that
the message part we are looking for is one continuous block, not a
set of distinct elements that require assembling.

1 String query = �SELECT first_name�
2 + � FROM � + employees_table
3 + � WHERE salary <= � + max_salary
4 + � AND salay > � + min_salary;
5 Connection conn = db.getConnection ();
6 Statement st = conn.createSatement ();
7 ResultSet rs = st.executeQuery(query);

Listing 15: SQL embedded in Java code.

While we used ANTLR for our parsing framework, one can use
any source-to-source transformation language for the same pur-
pose. There exist many source-to-source transformation languages
that could be used instead of ANTLR. An example is TXL [27]. TXL
requires two components to operate: a grammar describing what
TXL will be transforming from, and, a set of transformation rules
to apply to the input source. TXL is a powerful tool used in in-
dustrial and academic applications such as programming language
processors, program analyzers, document processors, and many
others. We chose ANTLR over TXL since TXL uses a �le-based
approach. The input and output of TXL are stand-alone �les while
ANTLR operates entirely in memory, alowing us to read directly
from network interfaces in the future.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a parser generation framework that
allows message categorization and targeted parsing for text-based
protocols. The components of our speci�cations are grammars
written in ANTLR with a single speci�cation �le that links them.
A general ANTLR grammar is used to parse the messages, and to
isolate the key part of the message that identi�es the category. Once
the category of the message is identi�ed using a regular expression,
the application speci�c part of the message is reparsed using an
application speci�c subgrammar.

Our next step is to extend the parser speci�cation language
presented in this paper and develop a constraint speci�cation lan-
guage for the IDS. Another future work to consider is to modify the
parser speci�cation language to support nested categories for deep
message inspection. That would allow us to categorize message
categories into more precise subcategories which can be partic-
ularly useful when dealing with complex applications. Since the
ANTLR-based parser generation engine supports modular construc-
tion of grammars, this is a straightforward extension. We also plan
to implement a feature similar to the work by van den Brink et
al. [26] that allows us to reconstruct a message element that is
broken down into several distinct components.

While our parser supports text-based protocols, it is not yet
compatible with encrypted protocols. Our target is static isolated
networks in which the keys used for the network tra�c are known.
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